A One-Step-Ahead Smoothing-Based Joint Ensemble Kalman Filter for State-Parameter Estimation of Hydrological Models

被引:1
作者
Gharamti, Mohamad E. [1 ]
Ait-El-Fquih, Boujemaa [2 ]
Hoteit, Ibrahim [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol, Earth Sci & Engn, Thuwal 23955, Saudi Arabia
[2] King Abdullah Univ Sci & Technol, Appl Math & Computat Sci, Thuwal 23955, Saudi Arabia
来源
DYNAMIC DATA-DRIVEN ENVIRONMENTAL SYSTEMS SCIENCE, DYDESS 2014 | 2015年 / 8964卷
关键词
DATA ASSIMILATION;
D O I
10.1007/978-3-319-25138-7_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ensemble Kalman filter (EnKF) recursively integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following a state-parameters joint augmentation strategy. In this study, we introduce a new smoothing-based joint EnKF scheme, in which we introduce a one-step-ahead smoothing of the state before updating the parameters. Numerical experiments are performed with a two-dimensional synthetic subsurface contaminant transport model. The improved performance of the proposed joint EnKF scheme compared to the standard joint EnKF compensates for the modest increase in the computational cost.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 17 条
  • [1] COHN SE, 1994, MON WEATHER REV, V122, P2838, DOI 10.1175/1520-0493(1994)122<2838:AFLKSF>2.0.CO
  • [2] 2
  • [3] Monte Carlo fixed-lag smoothing in state-space models
    Cuzol, A.
    Memin, E.
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2014, 21 (03) : 633 - 643
  • [4] Direct, prediction- and smoothing-based Kalman and particle filter algorithms
    Desbouvries, Francois
    Petetin, Yohan
    Ait-El-Fquih, Boujemaa
    [J]. SIGNAL PROCESSING, 2011, 91 (08) : 2064 - 2077
  • [5] Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem
    Franssen, H. J. Hendricks
    Kinzelbach, W.
    [J]. WATER RESOURCES RESEARCH, 2008, 44 (09)
  • [6] An adaptive hybrid EnKF-OI scheme for efficient state-parameter estimation of reactive contaminant transport models
    Gharamti, M. E.
    Valstar, J.
    Hoteit, I.
    [J]. ADVANCES IN WATER RESOURCES, 2014, 71 : 1 - 15
  • [7] Constraining a compositional flow model with flow- chemical data using an ensemble- based Kalman filter
    Gharamti, M. E.
    Kadoura, A.
    Valstar, J.
    Sun, S.
    Hoteit, I.
    [J]. WATER RESOURCES RESEARCH, 2014, 50 (03) : 2444 - 2467
  • [8] Complex step-based low-rank extended Kalman filtering for state-parameter estimation in subsurface transport models
    Gharamti, M. E.
    Hoteit, I.
    [J]. JOURNAL OF HYDROLOGY, 2014, 509 : 588 - 600
  • [9] GOMEZHERNANDEZ JJ, 1993, QUANT GEO G, V5, P85
  • [10] Data Assimilation by Conditioning of Driving Noise on Future Observations
    Lee, Wonjung
    Farmer, Chris
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (15) : 3887 - 3896