Towards High-Performance Solid-State-LiDAR-Inertial Odometry and Mapping

被引:163
作者
Li, Kailai [1 ]
Li, Meng [1 ]
Hanebeck, Uwe D. [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Anthropomat & Robot, Intelligent Sensor Actuator Syst Lab ISAS, D-76131 Karlsruhe, Germany
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2021年 / 6卷 / 03期
关键词
Laser radar; Feature extraction; Three-dimensional displays; Robot sensing systems; Optimization; Real-time systems; Runtime; Sensor fusion; localization; mapping;
D O I
10.1109/LRA.2021.3070251
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present a novel tightly-coupled LiDAR-inertial odometry and mapping scheme for both solid-state and mechanical LiDARs. As frontend, a feature-based lightweight LiDAR odometry provides fast motion estimates for adaptive keyframe selection. As backend, a hierarchical keyframe-based sliding window optimization is performed through marginalization for directly fusing IMU and LiDAR measurements. For the Livox Horizon, a newly released solid-state LiDAR, a novel feature extraction method is proposed to handle its irregular scan pattern during preprocessing. LiLi-OM (Livox LiDAR-inertial odometry and mapping) is real-time capable and achieves superior accuracy over state-of-the-art systems for both LiDAR types on public data sets of mechanical LiDARs and in experiments using the Livox Horizon. Source code and recorded experimental data sets are available at https://github.com/KIT-ISAS/lili-om.
引用
收藏
页码:5167 / 5174
页数:8
相关论文
共 28 条
  • [11] IN2LAAMA: Inertial Lidar Localization Autocalibration and Mapping
    Le Gentil, Cedric
    Vidal-Calleja, Teresa
    Huang, Shoudong
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (01) : 275 - 290
  • [12] Keyframe-based visual-inertial odometry using nonlinear optimization
    Leutenegger, Stefan
    Lynen, Simon
    Bosse, Michael
    Siegwart, Roland
    Furgale, Paul
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (03) : 314 - 334
  • [13] Lin JR, 2020, IEEE INT CONF ROBOT, P3126, DOI 10.1109/ICRA40945.2020.9197440
  • [14] Möls H, 2020, IEEE INT CONF ROBOT, P7920, DOI [10.1109/icra40945.2020.9197139, 10.1109/ICRA40945.2020.9197139]
  • [15] Pomerleau F, 2013, AUTON ROBOT, V34, P133, DOI 10.1007/s10514-013-9327-2
  • [16] Qin C, 2020, IEEE INT CONF ROBOT, P8899, DOI [10.1109/ICRA40945.2020.9197567, 10.1109/icra40945.2020.9197567]
  • [17] VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator
    Qin, Tong
    Li, Peiliang
    Shen, Shaojie
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (04) : 1004 - 1020
  • [18] Quigley M, 2009, IEEE INT CONF ROBOT, P3604
  • [19] Voxgraph: Globally Consistent, Volumetric Mapping Using Signed Distance Function Submaps
    Reijgwart, Victor
    Millane, Alexander
    Oleynikova, Helen
    Siegwart, Roland
    Cadena, Cesar
    Nieto, Juan
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (01) : 227 - 234
  • [20] Segal A., 2009, P ROB SCI SYST SEATT, VVolume 2, P435, DOI DOI 10.15607/RSS.2009.V.021