Towards High-Performance Solid-State-LiDAR-Inertial Odometry and Mapping

被引:163
作者
Li, Kailai [1 ]
Li, Meng [1 ]
Hanebeck, Uwe D. [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Anthropomat & Robot, Intelligent Sensor Actuator Syst Lab ISAS, D-76131 Karlsruhe, Germany
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2021年 / 6卷 / 03期
关键词
Laser radar; Feature extraction; Three-dimensional displays; Robot sensing systems; Optimization; Real-time systems; Runtime; Sensor fusion; localization; mapping;
D O I
10.1109/LRA.2021.3070251
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present a novel tightly-coupled LiDAR-inertial odometry and mapping scheme for both solid-state and mechanical LiDARs. As frontend, a feature-based lightweight LiDAR odometry provides fast motion estimates for adaptive keyframe selection. As backend, a hierarchical keyframe-based sliding window optimization is performed through marginalization for directly fusing IMU and LiDAR measurements. For the Livox Horizon, a newly released solid-state LiDAR, a novel feature extraction method is proposed to handle its irregular scan pattern during preprocessing. LiLi-OM (Livox LiDAR-inertial odometry and mapping) is real-time capable and achieves superior accuracy over state-of-the-art systems for both LiDAR types on public data sets of mechanical LiDARs and in experiments using the Livox Horizon. Source code and recorded experimental data sets are available at https://github.com/KIT-ISAS/lili-om.
引用
收藏
页码:5167 / 5174
页数:8
相关论文
共 28 条
  • [1] [Anonymous], 2016, Ceres Solver"
  • [2] Bogoslavskyi I, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P163, DOI 10.1109/IROS.2016.7759050
  • [3] Bultmann S, 2019, 2019 22 INT C INF FU, P1
  • [4] OBJECT MODELING BY REGISTRATION OF MULTIPLE RANGE IMAGES
    CHEN, Y
    MEDIONI, G
    [J]. IMAGE AND VISION COMPUTING, 1992, 10 (03) : 145 - 155
  • [5] Dellaert F., 2012, Rep. GT-RIM-CP&R-2012-002
  • [6] Engel J, 2012, IEEE INT C INT ROBOT, P2815, DOI 10.1109/IROS.2012.6385458
  • [7] Vision meets robotics: The KITTI dataset
    Geiger, A.
    Lenz, P.
    Stiller, C.
    Urtasun, R.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) : 1231 - 1237
  • [8] Grupp M., 2017, evo: Python package for the evaluation of odometry and slam
  • [9] iSAM2: Incremental smoothing and mapping using the Bayes tree
    Kaess, Michael
    Johannsson, Hordur
    Roberts, Richard
    Ila, Viorela
    Leonard, John J.
    Dellaert, Frank
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2012, 31 (02) : 216 - 235
  • [10] Hierarchical Voxel Block Hashing for Efficient Integration of Depth Images
    Kahler, Olaf
    Prisacariu, Victor
    Valentin, Julien
    Murray, David
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (01): : 192 - 197