Contrastive Self-supervised Representation Learning Using Synthetic Data

被引:4
作者
She, Dong-Yu [1 ]
Xu, Kun [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-supervised learning; contrastive learning; synthetic image; convolutional neural network; representation learning;
D O I
10.1007/s11633-021-1297-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Learning discriminative representations with deep neural networks often relies on massive labeled data, which is expensive and difficult to obtain in many real scenarios. As an alternative, self-supervised learning that leverages input itself as supervision is strongly preferred for its soaring performance on visual representation learning. This paper introduces a contrastive self-supervised framework for learning generalizable representations on the synthetic data that can be obtained easily with complete controllability. Specifically, we propose to optimize a contrastive learning task and a physical property prediction task simultaneously. Given the synthetic scene, the first task aims to maximize agreement between a pair of synthetic images generated by our proposed view sampling module, while the second task aims to predict three physical property maps, i.e., depth, instance contour maps, and surface normal maps. In addition, a feature-level domain adaptation technique with adversarial training is applied to reduce the domain difference between the realistic and the synthetic data. Experiments demonstrate that our proposed method achieves state-of-the-art performance on several visual recognition datasets.
引用
收藏
页码:556 / 567
页数:12
相关论文
共 50 条
  • [41] Contrastive Self-Supervised Learning for Optical Music Recognition
    Penarrubia, Carlos
    Valero-Mas, Jose J.
    Calvo-Zaragoza, Jorge
    DOCUMENT ANALYSIS SYSTEMS, DAS 2024, 2024, 14994 : 312 - 326
  • [42] Contrastive self-supervised learning for neurodegenerative disorder classification
    Gryshchuk, Vadym
    Singh, Devesh
    Teipel, Stefan
    Dyrba, Martin
    ADNI Study Grp
    AIBL Study Grp
    FTLDNI Study Grp
    FRONTIERS IN NEUROINFORMATICS, 2025, 19
  • [43] Interactive Contrastive Learning for Self-Supervised Entity Alignment
    Zeng, Kaisheng
    Dong, Zhenhao
    Hou, Lei
    Cao, Yixin
    Hu, Minghao
    Yu, Jifan
    Lv, Xin
    Cao, Lei
    Wang, Xin
    Liu, Haozhuang
    Huang, Yi
    Feng, Junlan
    Wan, Jing
    Li, Juanzi
    Feng, Ling
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2465 - 2475
  • [44] Contrastive Self-supervised Learning in Recommender Systems: A Survey
    Jing, Mengyuan
    Zhu, Yanmin
    Zang, Tianzi
    Wang, Ke
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (02)
  • [45] Memory Bank Clustering for Self-supervised Contrastive Learning
    Hao, Yiqing
    An, Gaoyun
    Ruan, Qiuqi
    IMAGE AND GRAPHICS TECHNOLOGIES AND APPLICATIONS, IGTA 2021, 2021, 1480 : 132 - 144
  • [46] Self-supervised contrastive learning for implicit collaborative filtering
    Song, Shipeng
    Liu, Bin
    Teng, Fei
    Li, Tianrui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [47] In-Domain Supervised and Contrastive Self-Supervised Representation Learning for Dense Prediction Problems in Remote Sensing Imageries
    Ghanbarzadeh, Ali
    Soleimani, Hossein
    IEEE ACCESS, 2024, 12 : 183510 - 183524
  • [48] Contrastive self-supervised representation learning framework for metal surface defect detection
    Mahe Zabin
    Anika Nahian Binte Kabir
    Muhammad Khubayeeb Kabir
    Ho-Jin Choi
    Jia Uddin
    Journal of Big Data, 10
  • [49] Self-Supervised Human Activity Recognition With Localized Time-Frequency Contrastive Representation Learning
    Taghanaki, Setareh Rahimi
    Rainbow, Michael
    Etemad, Ali
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2023, 53 (06) : 1027 - 1037
  • [50] Enhancing prognostics for sparse labeled data using advanced contrastive self-supervised learning with downstream integration
    Deng, Weikun
    Nguyen, Khanh T. P.
    Gogu, Christian
    Medjaher, Kamal
    Morio, Jerome
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 138