Optomechanical multistability in the quantum regime

被引:12
作者
Schulz, C. [1 ]
Alvermann, A. [1 ]
Bakemeier, L. [1 ]
Fehske, H. [1 ]
机构
[1] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany
关键词
CAVITY OPTOMECHANICS; RADIATION-PRESSURE; STATE DIFFUSION; GROUND-STATE; BACK-ACTION; LOCALIZATION; OSCILLATOR; SYSTEMS; MOTION;
D O I
10.1209/0295-5075/113/64002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classical optomechanical systems feature self-sustained oscillations, where multiple periodic orbits at different amplitudes coexist. We study how this multistability is realized in the quantum regime, where new dynamical patterns appear because quantum trajectories can move between different classical orbits. We explain the resulting quantum dynamics from the phase space point of view, and provide a quantitative description in terms of autocorrelation functions. In this way we can identify clear dynamical signatures of the crossover from classical to quantum mechanics in experimentally accessible quantities. Finally, we discuss a possible interpretation of our results in the sense that quantum mechanics protects optomechanical systems against the chaotic dynamics realized in the classical limit. Copyright (C) EPLA, 2016
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Multimode optomechanical system in the quantum regime
    Nielsen, William Hvidtfelt Padkaer
    Tsaturyan, Yeghishe
    Moller, Christoffer Bo
    Polzik, Eugene S.
    Schliesser, Albert
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (01) : 62 - 66
  • [2] Quantum reservoir engineering through quadratic optomechanical interaction in the reversed dissipation regime
    Lee, Jae Hoon
    Seok, H.
    PHYSICAL REVIEW A, 2018, 97 (01)
  • [3] Simulation of an optomechanical quantum memory in the nonlinear regime
    Teh, R. Y.
    Kiesewetter, S.
    Reid, M. D.
    Drummond, P. D.
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [4] Self-sustained oscillation and dynamical multistability of optomechanical systems in the extremely-large-amplitude regime
    Gao, Ming
    Lei, Fu-Chuan
    Du, Chun-Guang
    Long, Gui-Lu
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [5] Quantum nonlinear dynamics of optomechanical systems in the strong-coupling regime
    Machado, J. D. P.
    Blanter, Ya. M.
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [6] Commercializing optomechanical sensors: from the classical to quantum regime
    Li, Ying Lia
    Barker, Peter F.
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XVI, 2019, 11083
  • [7] Polariton multistability in a nonlinear optomechanical cavity
    Bhatt, Vijay
    Yadav, Surabhi
    Jha, Pradip K.
    Bhattacherjee, Aranya B.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (36)
  • [8] Quantum Control of Optomechanical Systems
    Hofer, Sebastian G.
    Hammerer, Klemens
    ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 66, 2017, 66 : 263 - 374
  • [9] Quantum Signatures of the Optomechanical Instability
    Qian, Jiang
    Clerk, A. A.
    Hammerer, K.
    Marquardt, Florian
    PHYSICAL REVIEW LETTERS, 2012, 109 (25)
  • [10] Optomechanical interfaces for hybrid quantum networks
    Dong, Chunhua
    Wang, Yingdan
    Wang, Hailin
    NATIONAL SCIENCE REVIEW, 2015, 2 (04) : 510 - 519