A new theorem on the existence of invariant distributions with applications to ARCH processes

被引:11
作者
Kazakevicius, V
Leipus, R
机构
[1] Vilnius State Univ, Dept Math & Informat, LT-2600 Vilnius, Lithuania
[2] Vilnius State Univ, Inst Math & Informat, LT-2600 Vilnius, Lithuania
关键词
Markov chain; invariant distribution; integrated ARCH process; nonlinear time series;
D O I
10.1017/S0021900200022312
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new theorem on the existence of an invariant initial distribution for a Markov chain evolving on a Polish space is proved. As an application of the theorem, sufficient conditions for the existence of integrated ARCH processes are established. In the case where these conditions are violated, the top Lyapunov exponent is shown to be zero.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1965, FUNCTIONAL ANAL
[2]   Fractionally integrated generalized autoregressive conditional heteroskedasticity [J].
Baillie, RT ;
Bollerslev, T ;
Mikkelsen, HO .
JOURNAL OF ECONOMETRICS, 1996, 74 (01) :3-30
[3]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[4]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[5]   STATIONARITY OF GARCH PROCESSES AND OF SOME NONNEGATIVE TIME-SERIES [J].
BOUGEROL, P ;
PICARD, N .
JOURNAL OF ECONOMETRICS, 1992, 52 (1-2) :115-127
[6]   Iterated random functions [J].
Diaconis, P ;
Freedman, D .
SIAM REVIEW, 1999, 41 (01) :45-76
[7]  
DUDLEY RM, 1989, REAN ANAL PROBABILIT
[8]  
Engle R. F., 1986, ECON REV, V27, P1
[9]  
Fonseca G, 2002, STAT SINICA, V12, P651
[10]   Stationary ARCH models: Dependence structure and central limit theorem [J].
Giraitis, L ;
Kokoszka, P ;
Leipus, R .
ECONOMETRIC THEORY, 2000, 16 (01) :3-22