ABA-induced stomatal movements in vascular plants during dehydration and rehydration

被引:72
作者
Hasan, Md Mahadi [1 ]
Gong, Lei [1 ]
Nie, Zheng-Fei [1 ]
Li, Feng-Ping [1 ]
Ahammed, Golam Jalal [2 ]
Fang, Xiang-Wen [1 ]
机构
[1] Lanzhou Univ, Sch Life Sci, State Key Lab Grassland Agroecosyst, Lanzhou 730000, Gansu, Peoples R China
[2] Henan Univ Sci & Technol, Coll Hort & Plant Protect, Luoyang 471023, Peoples R China
基金
中国国家自然科学基金;
关键词
Abscisic acid; Drought stress; Phytohormone; Rehydration; Stomatal closure; Vascular plants; LEAF HYDRAULIC CONDUCTANCE; WATER-USE EFFICIENCY; ABSCISIC-ACID ABA; ARABIDOPSIS-THALIANA; COMPENSATORY GROWTH; PROTEIN-KINASES; GUARD-CELLS; DROUGHT; RESPONSES; EVOLUTION;
D O I
10.1016/j.envexpbot.2021.104436
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The variation in stomatal movement across vascular plants in response to abscisic acid (ABA) has received great attention in recent years. This review is an attempt to better understand the role of ABA in the stomatal movement of seed and seedless plants under dehydration and rehydration. Seed plants, i.e., gymnosperms and angiosperms, have two divergent ABA responses, the peaking type (P-type) and rising type (R-type), to induce stomatal closure under sustained drought stress. However, in the case of ferns and lycophytes, stomata of almost all species exhibit insensitive (I-type) behaviour to ABA. Consequently, seed plants have evolved an optimized water use efficiency to improve their succession in terrestrial ecosystems. During rehydration, the recovery of gas exchange is constrained by ABA accumulation under drought in R-type plants and constrained by hydraulics in Pand I-type plants. Thus, future studies should investigate the mechanisms underlying the divergence in stomata in response to ABA, focusing on P-type vs. R-type ABA responses in seed plants, the competition of seed plants, and the interaction between ABA and hydraulic pathways during rehydration.
引用
收藏
页数:8
相关论文
共 94 条
[1]   The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought [J].
Ahammed, Golam Jalal ;
Li, Xin ;
Mao, Qi ;
Wan, Hongjian ;
Zhou, Guozhi ;
Cheng, Yuan .
PHYSIOLOGIA PLANTARUM, 2021, 172 (02) :885-895
[2]   The Stomatal Response to Reduced Relative Humidity Requires Guard Cell-Autonomous ABA Synthesis [J].
Bauer, Hubert ;
Ache, Peter ;
Lautner, Silke ;
Fromm, Joerg ;
Hartung, Wolfram ;
Al-Rasheid, Khaled A. S. ;
Sonnewald, Sophia ;
Sonnewald, Uwe ;
Kneitz, Susanne ;
Lachmann, Nicole ;
Mendel, Ralf R. ;
Bittner, Florian ;
Hetherington, Alistair M. ;
Hedrich, Rainer .
CURRENT BIOLOGY, 2013, 23 (01) :53-57
[3]   Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species [J].
Blackman, Christopher J. ;
Brodribb, Timothy J. ;
Jordan, Gregory J. .
PLANT CELL AND ENVIRONMENT, 2009, 32 (11) :1584-1595
[4]   K+ CHANNELS OF STOMATAL GUARD-CELLS - BIMODAL CONTROL OF THE K+ INWARD-RECTIFIER EVOKED BY AUXIN [J].
BLATT, MR ;
THIEL, G .
PLANT JOURNAL, 1994, 5 (01) :55-68
[5]   In Vivo Visualizations of Drought-Induced Embolism Spread in Vitis vinifera [J].
Brodersen, Craig Robert ;
McElrone, Andrew Joseph ;
Choat, Brendan ;
Lee, Eric Franklin ;
Shackel, Kenneth Andrew ;
Matthews, Mark Allen .
PLANT PHYSIOLOGY, 2013, 161 (04) :1820-1829
[6]   Passive Origins of Stomatal Control in Vascular Plants [J].
Brodribb, Tim J. ;
McAdam, Scott A. M. .
SCIENCE, 2011, 331 (6017) :582-585
[7]   Viewing leaf structure and evolution from a hydraulic perspective [J].
Brodribb, Tim J. ;
Feild, Taylor S. ;
Sack, Lawren .
FUNCTIONAL PLANT BIOLOGY, 2010, 37 (06) :488-498
[8]   Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers [J].
Brodribb, Tim J. ;
Cochard, Herve .
PLANT PHYSIOLOGY, 2009, 149 (01) :575-584
[9]   From reproduction to production, stomata are the master regulators [J].
Brodribb, Timothy J. ;
Sussmilch, Frances ;
McAdam, Scott A. M. .
PLANT JOURNAL, 2020, 101 (04) :756-767
[10]   Conifer species adapt to low-rainfall climates by following one of two divergent pathways [J].
Brodribb, Timothy J. ;
McAdam, Scott A. M. ;
Jordan, Gregory J. ;
Martins, Samuel C. V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (40) :14489-14493