INTEGRATION OF HIGH DENSITY AIRBORNE LIDAR AND HIGH SPATIAL RESOLUTION IMAGE FOR LANDCOVER CLASSIFICATION

被引:5
|
作者
Rahman, M. Z. A. [1 ]
Kadir, W. H. W. [1 ]
Rasib, A. W. [1 ]
Ariffin, A. [1 ]
Razak, K. A. [2 ]
机构
[1] Univ Teknol Malaysia, Fac Geoinformat Sci & Real Estate, Dept Geoinformat, TropicalMAP RES GRP, Johor Baharu 81310, Johor, Malaysia
[2] UTM Kuala Lumpur, UTM Razak Sch Engn & Adv Technol, Kuala Lumpur 54100, Malaysia
来源
2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2013年
关键词
Landcover classification; airborne LiDAR; support vector machine; LAND-COVER CLASSIFICATION;
D O I
10.1109/IGARSS.2013.6723438
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper discusses landcover classification using high density airborne LiDAR data and multispectral imagery. The study area is located at the Duursche Waarden floodplain, the Netherlands. The density of the FLI-MAP 400 LiDAR system is between 50 and 100 points per m(2). Other than height and intensity, the LiDAR system also measures spectral information (Red, Green, and Blue). Several features are created for height, intensity, Red, Green, and Blue. The landcover classification process is divided into Support Vector Machine (SVM) and Maximum Likelihood (ML) classifiers. Each classifier is used on three different datasets: 1) FLI-MAP 400-generated multispectral images, 2) LiDAR-derived features, and 3) a combination of the multispectral images and the LiDAR-derived features. The results show that the SVM method produces better classification results than the ML method. Landcover classification based on the combination of LiDAR-derived features and multispectral images produces better results than classification based on either dataset only.
引用
收藏
页码:2927 / 2930
页数:4
相关论文
共 50 条
  • [31] Spatial-Spectral Neural Network for High Resolution Multispectral Image Classification
    Tanha, Roozbeh
    Ghassemian, Hassan
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 51 - 55
  • [32] A High Spatial Resolution Aerial Image Dataset and an Efficient Scene Classification Model
    Lin, Yi
    He, Lin
    Zhong, Daiqi
    Song, Yufei
    Wei, Lujia
    Xin, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [33] Improving High Resolution Histology Image Classification with Deep Spatial Fusion Network
    Huang, Yongxiang
    Chung, Albert Chi-Shing
    COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 : 19 - 26
  • [34] Adaptive regional feature extraction for very high spatial resolution image classification
    Wang, Leiguang
    Dai, Qinling
    Hong, Liang
    Liu, Guoying
    JOURNAL OF APPLIED REMOTE SENSING, 2012, 6
  • [35] A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification
    Wang, Guizhou
    Liu, Jianbo
    He, Guojin
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [36] CLASSIFICATION AND ASSESSMENT OF THE STATE OF MIXED FORESTS FROM VERY HIGH SPATIAL RESOLUTION AIRBORNE IMAGES
    Dmitriev, E., V
    Kozub, V. A.
    Melnik, P. G.
    Sokolov, A. A.
    Safonova, A. N.
    LESNOY ZHURNAL-FORESTRY JOURNAL, 2019, (05) : 9 - 24
  • [37] Evaluating the potential of high-resolution airborne LiDAR data in glaciology
    Arnold, NS
    Rees, WG
    Devereux, BJ
    Amable, GS
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (5-6) : 1233 - 1251
  • [38] Airborne High Spectral Resolution Lidar for profiling aerosol optical properties
    Hair, Johnathan W.
    Hostetler, Chris A.
    Cook, Anthony L.
    Harper, David B.
    Ferrare, Richard A.
    Mack, Terry L.
    Welch, Wayne
    Izquierdo, Luis Ramos
    Hovis, Floyd E.
    APPLIED OPTICS, 2008, 47 (36) : 6734 - 6752
  • [39] Airborne High-Spectral-Resolution Lidar for Atmospheric Aerosol Detection
    Xu Junjie
    Bu Lingbing
    Liu Jiqiao
    Zhang Yang
    Zhu Shouzheng
    Wang Qin
    Zhu Xiaopeng
    Chen Weibiao
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (07):
  • [40] Forest Tree Detection and Segmentation using High Resolution Airborne LiDAR
    Windrim, Lloyd
    Bryson, Mitch
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 3898 - 3904