INTEGRATION OF HIGH DENSITY AIRBORNE LIDAR AND HIGH SPATIAL RESOLUTION IMAGE FOR LANDCOVER CLASSIFICATION

被引:5
|
作者
Rahman, M. Z. A. [1 ]
Kadir, W. H. W. [1 ]
Rasib, A. W. [1 ]
Ariffin, A. [1 ]
Razak, K. A. [2 ]
机构
[1] Univ Teknol Malaysia, Fac Geoinformat Sci & Real Estate, Dept Geoinformat, TropicalMAP RES GRP, Johor Baharu 81310, Johor, Malaysia
[2] UTM Kuala Lumpur, UTM Razak Sch Engn & Adv Technol, Kuala Lumpur 54100, Malaysia
来源
2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2013年
关键词
Landcover classification; airborne LiDAR; support vector machine; LAND-COVER CLASSIFICATION;
D O I
10.1109/IGARSS.2013.6723438
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper discusses landcover classification using high density airborne LiDAR data and multispectral imagery. The study area is located at the Duursche Waarden floodplain, the Netherlands. The density of the FLI-MAP 400 LiDAR system is between 50 and 100 points per m(2). Other than height and intensity, the LiDAR system also measures spectral information (Red, Green, and Blue). Several features are created for height, intensity, Red, Green, and Blue. The landcover classification process is divided into Support Vector Machine (SVM) and Maximum Likelihood (ML) classifiers. Each classifier is used on three different datasets: 1) FLI-MAP 400-generated multispectral images, 2) LiDAR-derived features, and 3) a combination of the multispectral images and the LiDAR-derived features. The results show that the SVM method produces better classification results than the ML method. Landcover classification based on the combination of LiDAR-derived features and multispectral images produces better results than classification based on either dataset only.
引用
收藏
页码:2927 / 2930
页数:4
相关论文
共 50 条
  • [1] Aerosol Classification Based on Airborne High Spectral Resolution Lidar
    Yao Na
    Zhang Miaomiao
    Bu Lingbing
    Gao Haiyang
    Wang Qin
    ACTA OPTICA SINICA, 2023, 43 (24)
  • [2] Aerosol classification by airborne high spectral resolution lidar observations
    Gross, S.
    Esselborn, M.
    Weinzierl, B.
    Wirth, M.
    Fix, A.
    Petzold, A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (05) : 2487 - 2505
  • [3] Research on Airborne High Resolution SAR Image Classification
    Duan, Lianfei
    Yang, Luyi
    Wang, Jing
    An, Zhanfeng
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL II, 2010, : 413 - 416
  • [4] Research on Airborne High Resolution SAR Image Classification
    Duan, Lianfei
    Yang, Luyi
    Wang, Jing
    An, Zhanfeng
    APPLIED INFORMATICS AND COMMUNICATION, PT 2, 2011, 225 : 677 - +
  • [5] High- resolution landcover classification using Random Forest
    Hayes, Matthew M.
    Miller, Scott N.
    Murphy, Melanie A.
    REMOTE SENSING LETTERS, 2014, 5 (02) : 112 - 121
  • [6] Land Cover Classification based on Object-oriented with Airborne Lidar and High Spectral Resolution Remote Sensing Image
    Li, Fangfang
    Liu, Zhengjun
    Xu, Qiangqiang
    Ren, Haicheng
    Zhou, Xingyu
    Yuan, Yonghua
    HYPERSPECTRAL REMOTE SENSING APPLICATIONS AND ENVIRONMENTAL MONITORING AND SAFETY TESTING TECHNOLOGY, 2016, 10156
  • [7] CNN-BASED TREE SPECIES CLASSIFICATION USING AIRBORNE LIDAR DATA AND HIGH-RESOLUTION SATELLITE IMAGE
    Li, Hui
    Hu, Baoxin
    Li, Qian
    Jing, Linhai
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2679 - 2682
  • [8] Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples
    Burton, S. P.
    Ferrare, R. A.
    Hostetler, C. A.
    Hair, J. W.
    Rogers, R. R.
    Obland, M. D.
    Butler, C. F.
    Cook, A. L.
    Harper, D. B.
    Froyd, K. D.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (01) : 73 - 98
  • [9] Tree genera classification with geometric features from high-density airborne LiDAR
    Ko, Connie
    Sohn, Gunho
    Remmel, Tarmo K.
    CANADIAN JOURNAL OF REMOTE SENSING, 2013, 39 : S73 - S85
  • [10] On the classification of remote sensing high spatial resolution image data
    Batista, Marlos Henrique
    Haertel, Victor
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (20) : 5533 - 5548