INTEGRATION OF HIGH DENSITY AIRBORNE LIDAR AND HIGH SPATIAL RESOLUTION IMAGE FOR LANDCOVER CLASSIFICATION

被引:5
作者
Rahman, M. Z. A. [1 ]
Kadir, W. H. W. [1 ]
Rasib, A. W. [1 ]
Ariffin, A. [1 ]
Razak, K. A. [2 ]
机构
[1] Univ Teknol Malaysia, Fac Geoinformat Sci & Real Estate, Dept Geoinformat, TropicalMAP RES GRP, Johor Baharu 81310, Johor, Malaysia
[2] UTM Kuala Lumpur, UTM Razak Sch Engn & Adv Technol, Kuala Lumpur 54100, Malaysia
来源
2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2013年
关键词
Landcover classification; airborne LiDAR; support vector machine; LAND-COVER CLASSIFICATION;
D O I
10.1109/IGARSS.2013.6723438
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper discusses landcover classification using high density airborne LiDAR data and multispectral imagery. The study area is located at the Duursche Waarden floodplain, the Netherlands. The density of the FLI-MAP 400 LiDAR system is between 50 and 100 points per m(2). Other than height and intensity, the LiDAR system also measures spectral information (Red, Green, and Blue). Several features are created for height, intensity, Red, Green, and Blue. The landcover classification process is divided into Support Vector Machine (SVM) and Maximum Likelihood (ML) classifiers. Each classifier is used on three different datasets: 1) FLI-MAP 400-generated multispectral images, 2) LiDAR-derived features, and 3) a combination of the multispectral images and the LiDAR-derived features. The results show that the SVM method produces better classification results than the ML method. Landcover classification based on the combination of LiDAR-derived features and multispectral images produces better results than classification based on either dataset only.
引用
收藏
页码:2927 / 2930
页数:4
相关论文
共 6 条
[1]   Object-based land cover classification using airborne LiDAR [J].
Antonarakis, A. S. ;
Richards, K. S. ;
Brasington, J. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (06) :2988-2998
[2]  
Axelsson P., 2000, The International Archives of the Photogrammetry and Remote Sensing, Amsterdam, The Netherlands, VXXXIII, P110, DOI DOI 10.1016/J.ISPRSJPRS.2005.10.005
[3]  
Bartels M., 2006, Accounting quality: International accounting standards and US GAAP, P1
[4]   Object-oriented land cover classification of lidar-derived surfaces [J].
Brennan, R. ;
Webster, T. L. .
CANADIAN JOURNAL OF REMOTE SENSING, 2006, 32 (02) :162-172
[5]  
Charaniya A. P., 2004, IEEE COMP SOC C COMP, P1063
[6]   Floodplain roughness parameterization using airborne laser scanning and spectral remote sensing [J].
Straatsma, M. W. ;
Baptist, M. J. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (03) :1062-1080