Terahertz imaging using quantum cascade lasers-a review of systems and applications

被引:148
作者
Dean, P. [1 ]
Valavanis, A. [1 ]
Keeley, J. [1 ]
Bertling, K. [2 ]
Lim, Y. L. [2 ]
Alhathlool, R. [1 ]
Burnett, A. D. [1 ]
Li, L. H. [1 ]
Khanna, S. P. [1 ]
Indjin, D. [1 ]
Taimre, T. [3 ]
Rakic, A. D. [2 ]
Linfield, E. H. [1 ]
Davies, A. G. [1 ]
机构
[1] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Queensland, Sch Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia
[3] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
imaging; quantum cascade lasers; terahertz; LOCAL OSCILLATOR; HIGH-TEMPERATURE; PHASE-LOCKING; THZ; FREQUENCY; SPECTROSCOPY; EXPLOSIVES; EMISSION; INTERFEROMETRY; IDENTIFICATION;
D O I
10.1088/0022-3727/47/37/374008
中图分类号
O59 [应用物理学];
学科分类号
摘要
The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of THz radiation offering high power, high spectral purity and moderate tunability. As such, these sources are particularly suited to the application of THz frequency imaging across a range of disciplines, and have motivated significant research interest in this area over the past decade. In this paper we review the technological approaches to THz QCL-based imaging and the key advancements within this field. We discuss in detail a number of imaging approaches targeted to application areas including multiple-frequency transmission and diffuse reflection imaging for the spectral mapping of targets; as well as coherent approaches based on the self-mixing phenomenon in THz QCLs for long-range imaging, three-dimensional imaging, materials analysis, and high-resolution inverse synthetic aperture radar imaging.
引用
收藏
页数:22
相关论文
共 120 条
[1]   Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions [J].
Adam, AJL ;
Kasalynas, I ;
Hovenier, JN ;
Klaassen, TO ;
Gao, JR ;
Orlova, EE ;
Williams, BS ;
Kumar, S ;
Hu, Q ;
Reno, JL .
APPLIED PHYSICS LETTERS, 2006, 88 (15)
[2]   Low-divergence single-mode terahertz quantum cascade laser [J].
Amanti, M. I. ;
Fischer, M. ;
Scalari, G. ;
Beck, M. ;
Faist, J. .
NATURE PHOTONICS, 2009, 3 (10) :586-590
[3]   Stand-alone system for high-resolution, real-time terahertz imaging [J].
Amanti, Maria I. ;
Scalari, Giacomo ;
Beck, Mattias ;
Faist, Jerome .
OPTICS EXPRESS, 2012, 20 (03) :2772-2778
[4]  
[Anonymous], 2003, Sensing with THz Radiation
[5]   Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode [J].
Barbieri, S ;
Alton, J ;
Beere, HE ;
Linfield, EH ;
Ritchie, DA ;
Withington, S ;
Scalari, G ;
Ajili, L ;
Faist, J .
OPTICS LETTERS, 2004, 29 (14) :1632-1634
[6]   2.9 THz quantum cascade lasers operating up to 70 K in continuous wave [J].
Barbieri, S ;
Alton, J ;
Beere, HE ;
Fowler, J ;
Linfield, EH ;
Ritchie, DA .
APPLIED PHYSICS LETTERS, 2004, 85 (10) :1674-1676
[7]   Imaging with THz quantum cascade lasers using a Schottky diode mixer [J].
Barbieri, S ;
Alton, J ;
Baker, C ;
Lo, T ;
Beere, HE ;
Ritchie, D .
OPTICS EXPRESS, 2005, 13 (17) :6497-6503
[8]  
Barbieri S, 2010, NAT PHOTONICS, V4, P636, DOI [10.1038/nphoton.2010.125, 10.1038/NPHOTON.2010.125]
[9]   Linewidth and tuning characteristics of terahertz quantum cascade lasers [J].
Barkan, A ;
Tittel, FK ;
Mittleman, DM ;
Dengler, R ;
Siegel, PH ;
Scalari, G ;
Ajili, L ;
Faist, J ;
Beere, HE ;
Linfield, EH ;
Davies, AG ;
Ritchie, DA .
OPTICS LETTERS, 2004, 29 (06) :575-577
[10]   Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared micrometer camera [J].
Behnken, Barry N. ;
Karunasiri, Gamani ;
Chamberlin, Danielle R. ;
Robrish, Peter R. ;
Faist, Jerome .
OPTICS LETTERS, 2008, 33 (05) :440-442