Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling

被引:65
作者
Zyserman, FI
Santos, JE
机构
[1] Natl Univ La Plata, Dept Fis, RA-1900 La Plata, Argentina
[2] Natl Univ La Plata, Fac Cs Astron & Geofis, Dept Geofis Aplicada, CONICET, RA-1900 La Plata, Argentina
[3] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
magnetotelluric methods; numerical models; finite element analysis; electromagnetic field; conductivity;
D O I
10.1016/S0926-9851(00)00012-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We present a new finite element (FE) method for magnetotelluric modelling of three-dimensional conductivity structures. Maxwell's equations are treated as a system of first-order partial differential equations for the secondary fields. Absorbing boundary conditions are introduced, minimizing undesired boundary effects and allowing the use of small computational domains. The numerical algorithm presented here is an iterative, domain decomposition procedure employing a nonconforming FE space. It does not use global matrices, therefore allowing the modellization of large and complicated structures. The algorithm is naturally parallellizable, and we show results obtained in the IBM SP2 parallel supercomputer at Purdue University. The accuracy of the numerical method is verified by checking the computed solutions with the results of COMMEMI, the international project on the comparison of modelling methods for electromagnetic induction. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:337 / 351
页数:15
相关论文
共 20 条
[1]   Three-dimensional wideband electromagnetic modeling on massively parallel computers [J].
Alumbaugh, DL ;
Newman, GA ;
Prevost, L ;
Shadid, JN .
RADIO SCIENCE, 1996, 31 (01) :1-23
[2]  
ARNOLD DN, 1985, MATH ANAL NUMERIQUE, V9, P7
[3]   A PARALLEL ITERATIVE PROCEDURE APPLICABLE TO THE APPROXIMATE SOLUTION OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS BY MIXED FINITE-ELEMENT METHODS [J].
DOUGLAS, J ;
LEME, PJP ;
ROBERTS, JE ;
WANG, JP .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :95-108
[4]  
DOUGLAS J, 2000, IN PRESS MATH MODEL
[5]  
Douglas Jr J., 1997, COMPUTATIONAL GEOSCI, V1, P155
[6]   3-DIMENSIONAL MAGNETOTELLURIC MODELING USING DIFFERENCE-EQUATIONS - THEORY AND COMPARISONS TO INTEGRAL-EQUATION SOLUTIONS [J].
MACKIE, RL ;
MADDEN, TR ;
WANNAMAKER, PE .
GEOPHYSICS, 1993, 58 (02) :215-226
[8]   Three-dimensional modeling of magnetotelluric data using finite element method [J].
Mogi, T .
JOURNAL OF APPLIED GEOPHYSICS, 1996, 35 (2-3) :185-189
[9]   MIXED FINITE-ELEMENTS IN IR3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1980, 35 (03) :315-341
[10]   INCOMPRESSIBLE MIXED FINITE-ELEMENTS FOR STOKES EQUATIONS [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1982, 39 (01) :97-112