HA U-Net: Improved Model for Building Extraction From High Resolution Remote Sensing Imagery

被引:25
|
作者
Xu, Leilei [1 ]
Liu, Yujun [2 ,3 ]
Yang, Peng [4 ,5 ]
Chen, Hao [6 ]
Zhang, Hanyue [7 ]
Wang, Dan [3 ]
Zhang, Xin [8 ]
机构
[1] Hohai Univ, Sch Earth Sci & Engn, Nanjing 211100, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[3] Prov Geomat Ctr Jiangsu, Nanjing 210013, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Qilu Res Inst, Jinan 250100, Peoples R China
[5] Suzhou Zhe Xin Informat Technol Co Ltd, Suzhou 215000, Peoples R China
[6] Tech Univ Berlin, Inst Geodesy & Geoinformat Sci, D-10553 Berlin, Germany
[7] Beijing Forestry Univ, Precis Forestry Key Lab Beijing, Beijing 100083, Peoples R China
[8] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
来源
IEEE ACCESS | 2021年 / 9卷 / 09期
关键词
Buildings; Feature extraction; Image segmentation; Remote sensing; Predictive models; Training; Task analysis; Deep learning; building extraction; holistically-nested neural network; attention mechanism; weight mapping; watershed algorithm; SEGMENTATION; FRAMEWORK; NETWORK;
D O I
10.1109/ACCESS.2021.3097630
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic extraction of buildings from high-resolution remote sensing images becomes an important research. Since the convolutional neural network can perform pixel-level segmentation, this technology has been applied in this field. But the increase in resolution prone to blurry segmentation because the model needs more edge detail and multi-scale detail learning. To solve this problem, a method is proposed in this paper, which consists of three parts: (1) an improved model named Holistically-Nested Attention U-Net (HA U-Net) is designed, which integrates the attention mechanism and multi-scale nested modules to supervise prediction; (2) During model training, an improved weighted loss function is proposed to make the designed model more focused on learning boundary features; (3) watershed algorithm is exploited for image post-processing to optimize segmentation results. The designed HA U-Net performs well on WHU Building Dataset and Urban3d Challenge dataset, and achieves 9.31%, 2.17% better F1-score and 10.78%, 1.77% better IOU than the standard U-Net respectively. The experimental results indicate that the proposed method can well solve the building adhesion problem. The research can serve as updating geographic databases.
引用
收藏
页码:101972 / 101984
页数:13
相关论文
共 50 条
  • [41] Rural Building Extraction Based on Joint U-Net and the Generalized Chinese Restaurant Franchise from Remote Sensing Images
    Wang, Zixiong
    Li, Shaodan
    Zhu, Zimeng
    SUSTAINABILITY, 2023, 15 (05)
  • [42] Improved U-Net Network Segmentation Method for Remote Sensing Image
    Zhong, Letian
    Lin, Yong
    Sul, Yian
    Fang, Xianbao
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1034 - 1039
  • [43] Improved U-Net remote sensing image semantic segmentation method
    Hu G.
    Yang C.
    Xu L.
    Shang H.
    Wang Z.
    Qin Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (06): : 980 - 989
  • [44] MHA-Net: Multipath Hybrid Attention Network for Building Footprint Extraction From High-Resolution Remote Sensing Imagery
    Cai, Jihong
    Chen, Yimin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5807 - 5817
  • [45] An improved U-Net method for the semantic segmentation of remote sensing images
    Zhongbin Su
    Wei Li
    Zheng Ma
    Rui Gao
    Applied Intelligence, 2022, 52 : 3276 - 3288
  • [46] An improved U-Net method for the semantic segmentation of remote sensing images
    Su, Zhongbin
    Li, Wei
    Ma, Zheng
    Gao, Rui
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3276 - 3288
  • [47] RESEARCH ON REMOTE SENSING CROP CLASSIFICATION BASED ON IMPROVED U-NET
    Yin, Qiwei
    He, Yan
    Zuo, Lang
    Kang, Kai
    Zhang, Wei
    ENGENHARIA AGRICOLA, 2024, 44
  • [48] Design of VGG Structured U-Net Model for Remote Sensing Green Space Information Extraction
    Tong, Shan
    Li, Shaokang
    JOURNAL OF GEOVISUALIZATION AND SPATIAL ANALYSIS, 2025, 9 (01)
  • [49] BUILDINGS EXTRACTION FROM REMOTE SENSING DATA USING DEEP LEARNING METHOD BASED ON IMPROVED U-NET NETWORK
    Duan, Yiru
    Sun, Lin
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3959 - 3961
  • [50] Research on Object Detection Technique in High Resolution Remote Sensing Images Based on U-Net
    Wu Zhihuan
    Gao Yongming
    Li Lei
    Fan Junliang
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2849 - 2853