HA U-Net: Improved Model for Building Extraction From High Resolution Remote Sensing Imagery

被引:25
|
作者
Xu, Leilei [1 ]
Liu, Yujun [2 ,3 ]
Yang, Peng [4 ,5 ]
Chen, Hao [6 ]
Zhang, Hanyue [7 ]
Wang, Dan [3 ]
Zhang, Xin [8 ]
机构
[1] Hohai Univ, Sch Earth Sci & Engn, Nanjing 211100, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[3] Prov Geomat Ctr Jiangsu, Nanjing 210013, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Qilu Res Inst, Jinan 250100, Peoples R China
[5] Suzhou Zhe Xin Informat Technol Co Ltd, Suzhou 215000, Peoples R China
[6] Tech Univ Berlin, Inst Geodesy & Geoinformat Sci, D-10553 Berlin, Germany
[7] Beijing Forestry Univ, Precis Forestry Key Lab Beijing, Beijing 100083, Peoples R China
[8] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
来源
IEEE ACCESS | 2021年 / 9卷 / 09期
关键词
Buildings; Feature extraction; Image segmentation; Remote sensing; Predictive models; Training; Task analysis; Deep learning; building extraction; holistically-nested neural network; attention mechanism; weight mapping; watershed algorithm; SEGMENTATION; FRAMEWORK; NETWORK;
D O I
10.1109/ACCESS.2021.3097630
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic extraction of buildings from high-resolution remote sensing images becomes an important research. Since the convolutional neural network can perform pixel-level segmentation, this technology has been applied in this field. But the increase in resolution prone to blurry segmentation because the model needs more edge detail and multi-scale detail learning. To solve this problem, a method is proposed in this paper, which consists of three parts: (1) an improved model named Holistically-Nested Attention U-Net (HA U-Net) is designed, which integrates the attention mechanism and multi-scale nested modules to supervise prediction; (2) During model training, an improved weighted loss function is proposed to make the designed model more focused on learning boundary features; (3) watershed algorithm is exploited for image post-processing to optimize segmentation results. The designed HA U-Net performs well on WHU Building Dataset and Urban3d Challenge dataset, and achieves 9.31%, 2.17% better F1-score and 10.78%, 1.77% better IOU than the standard U-Net respectively. The experimental results indicate that the proposed method can well solve the building adhesion problem. The research can serve as updating geographic databases.
引用
收藏
页码:101972 / 101984
页数:13
相关论文
共 50 条
  • [41] Oceanic Eddy Identification Using Pyramid Split Attention U-Net With Remote Sensing Imagery
    Zhao, Nan
    Huang, Baoxiang
    Yang, Jie
    Radenkovic, Milena
    Chen, Ge
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [42] Full-Level Domain Adaptation for Building Extraction in Very-High-Resolution Optical Remote-Sensing Images
    Peng, Daifeng
    Guan, Haiyan
    Zang, Yufu
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] Mixer U-Net: An Improved Automatic Road Extraction from UAV Imagery
    Sultonov, Furkat
    Park, Jun-Hyun
    Yun, Sangseok
    Lim, Dong-Woo
    Kang, Jae-Mo
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [44] An improved U-Net method for the semantic segmentation of remote sensing images
    Su, Zhongbin
    Li, Wei
    Ma, Zheng
    Gao, Rui
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3276 - 3288
  • [45] An improved U-Net method for the semantic segmentation of remote sensing images
    Zhongbin Su
    Wei Li
    Zheng Ma
    Rui Gao
    Applied Intelligence, 2022, 52 : 3276 - 3288
  • [46] Multiregion Scale-Aware Network for Building Extraction From High-Resolution Remote Sensing Images
    Liu, Yu
    Zhao, Zhengyang
    Zhang, Shanwen
    Huang, Lei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [47] Hierarchical Disentangling Network for Building Extraction from Very High Resolution Optical Remote Sensing Imagery
    Li, Jianhao
    Zhuang, Yin
    Dong, Shan
    Gao, Peng
    Dong, Hao
    Chen, He
    Chen, Liang
    Li, Lianlin
    REMOTE SENSING, 2022, 14 (07)
  • [48] Building Polygon Extraction from High-Resolution Remote Sensing Imagery Using Knowledge Distillation
    Xu, Haiyan
    Xu, Gang
    Sun, Geng
    Chen, Jie
    Hao, Jun
    Mourtzis, Dimitris
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [49] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    IEEE ACCESS, 2024, 12 : 534 - 551
  • [50] CTMU-Net: An Improved U-Net for Semantic Segmentation of Remote-Sensing Images Based on the Combined Attention Mechanism
    Li, Yuanjun
    Zhu, Zhiyu
    Li, Yuanjiang
    Zhang, Jinglin
    Li, Xi
    Shang, Shuyao
    Zhu, Dewen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 10148 - 10161