HA U-Net: Improved Model for Building Extraction From High Resolution Remote Sensing Imagery

被引:25
|
作者
Xu, Leilei [1 ]
Liu, Yujun [2 ,3 ]
Yang, Peng [4 ,5 ]
Chen, Hao [6 ]
Zhang, Hanyue [7 ]
Wang, Dan [3 ]
Zhang, Xin [8 ]
机构
[1] Hohai Univ, Sch Earth Sci & Engn, Nanjing 211100, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[3] Prov Geomat Ctr Jiangsu, Nanjing 210013, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Qilu Res Inst, Jinan 250100, Peoples R China
[5] Suzhou Zhe Xin Informat Technol Co Ltd, Suzhou 215000, Peoples R China
[6] Tech Univ Berlin, Inst Geodesy & Geoinformat Sci, D-10553 Berlin, Germany
[7] Beijing Forestry Univ, Precis Forestry Key Lab Beijing, Beijing 100083, Peoples R China
[8] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
来源
IEEE ACCESS | 2021年 / 9卷 / 09期
关键词
Buildings; Feature extraction; Image segmentation; Remote sensing; Predictive models; Training; Task analysis; Deep learning; building extraction; holistically-nested neural network; attention mechanism; weight mapping; watershed algorithm; SEGMENTATION; FRAMEWORK; NETWORK;
D O I
10.1109/ACCESS.2021.3097630
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic extraction of buildings from high-resolution remote sensing images becomes an important research. Since the convolutional neural network can perform pixel-level segmentation, this technology has been applied in this field. But the increase in resolution prone to blurry segmentation because the model needs more edge detail and multi-scale detail learning. To solve this problem, a method is proposed in this paper, which consists of three parts: (1) an improved model named Holistically-Nested Attention U-Net (HA U-Net) is designed, which integrates the attention mechanism and multi-scale nested modules to supervise prediction; (2) During model training, an improved weighted loss function is proposed to make the designed model more focused on learning boundary features; (3) watershed algorithm is exploited for image post-processing to optimize segmentation results. The designed HA U-Net performs well on WHU Building Dataset and Urban3d Challenge dataset, and achieves 9.31%, 2.17% better F1-score and 10.78%, 1.77% better IOU than the standard U-Net respectively. The experimental results indicate that the proposed method can well solve the building adhesion problem. The research can serve as updating geographic databases.
引用
收藏
页码:101972 / 101984
页数:13
相关论文
共 50 条
  • [21] Leveraging U-Net and selective feature extraction for land cover classification using remote sensing imagery
    Ramos, Leo Thomas
    Sappa, Angel D.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [22] A Review of Building Extraction From Remote Sensing Imagery: Geometrical Structures and Semantic Attributes
    Li, Qingyu
    Mou, Lichao
    Sun, Yao
    Hua, Yuansheng
    Shi, Yilei
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [23] BEMRF-Net: Boundary Enhancement and Multiscale Refinement Fusion for Building Extraction From Remote Sensing Imagery
    Cao, Shaohan
    Feng, Dejun
    Liu, Suning
    Xu, Wanqi
    Chen, Hongyu
    Xie, Yakun
    Zhang, Heng
    Pirasteh, Saied
    Zhu, Jun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 16342 - 16358
  • [24] Building extraction from remote sensing images using deep residual U-Net
    Wang, Haiying
    Miao, Fang
    EUROPEAN JOURNAL OF REMOTE SENSING, 2022, 55 (01) : 71 - 85
  • [25] MMRAD-Net: A Multi-Scale Model for Precise Building Extraction from High-Resolution Remote Sensing Imagery with DSM Integration
    Gao, Yu
    Chai, Huiming
    Lv, Xiaolei
    REMOTE SENSING, 2025, 17 (06)
  • [26] Reconstruction Bias U-Net for Road Extraction From Optical Remote Sensing Images
    Chen, Ziyi
    Wang, Cheng
    Li, Jonathan
    Xie, Nianci
    Han, Yan
    Du, Jixiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2284 - 2294
  • [27] DE-Net: Deep Encoding Network for Building Extraction from High-Resolution Remote Sensing Imagery
    Liu, Hao
    Luo, Jiancheng
    Huang, Bo
    Hu, Xiaodong
    Sun, Yingwei
    Yang, Yingpin
    Xu, Nan
    Zhou, Nan
    REMOTE SENSING, 2019, 11 (20)
  • [28] Layout-Anchored Prioritizing Continual Learning for Continuous Building Footprint Extraction From High-Resolution Remote Sensing Imagery
    Chen, Dingyuan
    Song, Zhaohui
    Ma, Ailong
    Zhong, Yanfei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [29] Extraction of Terraces in Hilly Areas from Remote Sensing Images Using DEM and Improved U-Net
    Peng, Fengcan
    Peng, Qiuzhi
    Chen, Di
    Lu, Jiating
    Song, Yufei
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2024, 90 (03) : 181 - 188
  • [30] A Siamese Network Based U-Net for Change Detection in High Resolution Remote Sensing Images
    Chen, Tao
    Lu, Zhiyuan
    Yang, Yue
    Zhang, Yuxiang
    Du, Bo
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2357 - 2369