Live-cell Imaging of Platelet Degranulation and Secretion Under Flow

被引:10
作者
Barendrecht, Arjan D. [1 ]
Verhoef, Johan J. F. [2 ]
Pignatelli, Silvia [1 ]
Pasterkamp, Gerard [1 ]
Heijnen, Harry F. G. [1 ]
Maas, Coen [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Clin Chem & Haematol, Utrecht, Netherlands
[2] Univ Utrecht, Utrecht Inst Pharmaceut Sci, Dept Pharmaceut, Utrecht, Netherlands
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2017年 / 125期
关键词
Cellular Biology; Issue; 125; Platelets; adhesion; secretion; microscopy; hemostasis; thrombosis; VON-WILLEBRAND-FACTOR; DENSE GRANULES; BLOOD; POLYPHOSPHATE; PROTEINS;
D O I
10.3791/55658
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Blood platelets are essential players in hemostasis, the formation of thrombi to seal vascular breaches. They are also involved in thrombosis, the formation of thrombi that occlude the vasculature and injure organs, with life-threatening consequences. This motivates scientific research on platelet function and the development of methods to track cell-biological processes as they occur under flow conditions. A variety of flow models are available for the study of platelet adhesion and aggregation, two key phenomena in platelet biology. This work describes a method to study real-time platelet degranulation under flow during activation. The method makes use of a flow chamber coupled to a syringe-pump setup that is placed under a wide-field, inverted, LED-based fluorescence microscope. The setup described here allows for the simultaneous excitation of multiple fluorophores that are delivered by fluorescently labeled antibodies or fluorescent dyes. After live-cell imaging experiments, the cover glasses can be further processed and analyzed using static microscopy (i.e., confocal microscopy or scanning electron microscopy).
引用
收藏
页数:11
相关论文
共 19 条
[1]  
Basir Amir, 2015, Innovations (Phila), V10, P195, DOI 10.1097/IMI.0000000000000163
[2]   Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis [J].
Battinelli, Elisabeth M. ;
Markens, Beth A. ;
Italiano, Joseph E., Jr. .
BLOOD, 2011, 118 (05) :1359-1369
[3]  
Fitch-Tewfik Jennifer L, 2013, Front Endocrinol (Lausanne), V4, P77, DOI 10.3389/fendo.2013.00077
[4]   Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet α-granules [J].
Kamykowski, Jeffrey ;
Carlton, Peter ;
Sehgal, Siddharth ;
Storrie, Brian .
BLOOD, 2011, 118 (05) :1370-1373
[5]  
MAY BURKARD, 1967, LIFE SCI, V6, P2079, DOI 10.1016/0024-3205(67)90227-5
[6]   Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity [J].
Mitchell, Joanne L. ;
Lionikiene, Ausra S. ;
Georgiev, Georgi ;
Klemmer, Anja ;
Brain, Chelsea ;
Kim, Paul Y. ;
Mutch, Nicola J. .
BLOOD, 2016, 128 (24) :2834-2845
[7]   A shear gradient-dependent platelet aggregation mechanism drives thrombus formation [J].
Nesbitt, Warwick S. ;
Westein, Erik ;
Tovar-Lopez, Francisco Javier ;
Tolouei, Elham ;
Mitchell, Arnan ;
Fu, Jia ;
Carberry, Josie ;
Fouras, Andreas ;
Jackson, Shaun P. .
NATURE MEDICINE, 2009, 15 (06) :665-U146
[8]   THE PROTEIN CD63 IS IN PLATELET DENSE GRANULES, IS DEFICIENT IN A PATIENT WITH HERMANSKY-PUDLAK SYNDROME, AND APPEARS IDENTICAL TO GRANULOPHYSIN [J].
NISHIBORI, M ;
CHAM, B ;
MCNICOL, A ;
SHALEV, A ;
JAIN, N ;
GERRARD, JM .
JOURNAL OF CLINICAL INVESTIGATION, 1993, 91 (04) :1775-1782
[9]   Spinning-disk confocal microscopy: present technology and future trends [J].
Oreopoulos, John ;
Berman, Richard ;
Browne, Mark .
QUANTITATIVE IMAGING IN CELL BIOLOGY, 2014, 123 :153-175
[10]   Mean platelet volume as an indicator of platelet activation: methodological issues [J].
Park, Y ;
Schoene, N ;
Harris, W .
PLATELETS, 2002, 13 (5-6) :301-306