Fermat?s Last Theorem and modular curves over real quadratic fields

被引:8
作者
Michaud-Jacobs, Philippe [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry, W Midlands, England
关键词
Key words and phrases; Fermat?s Last Theorem; Fermat equation; Frey curve; Galois representations; quadratic points; modular curves; irreducibility; Hilbert modular forms; ELLIPTIC-CURVES; TORSION POINTS; EQUATION; REPRESENTATIONS; IRREDUCIBILITY; ISOGENIES;
D O I
10.4064/aa210812-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:319 / 351
页数:33
相关论文
共 42 条
[1]  
[Anonymous], 1977, Publications Mathematiques de l'Institut des Hautes Scientifiques
[2]  
Bars F., 2013, ARXIV13083267V2
[3]   Superelliptic equations arising from sums of consecutive powers [J].
Bennett, Michael A. ;
Patel, Vandita ;
Siksek, Samir .
ACTA ARITHMETICA, 2016, 172 (04) :377-393
[4]  
Billerey N., 2018, ARXIV180204330V2, V13
[5]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[6]   QUADRATIC POINTS ON MODULAR CURVES WITH INFINITE MORDELL-WEIL GROUP [J].
Box, Josha .
MATHEMATICS OF COMPUTATION, 2021, 90 (327) :321-343
[7]   The Mordell-Weil sieve: proving non-existence of rational points on curves [J].
Bruin, Nils ;
Stoll, Michael .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 :272-306
[8]   Hyperelliptic modular curves X0(n) and isogenies of elliptic curves over quadratic fields [J].
Bruin, Peter ;
Najman, Filip .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2015, 18 (01) :578-602
[9]   HECKE AND STURM BOUNDS FOR HILBERT MODULAR FORMS OVER REAL QUADRATIC FIELDS [J].
Burgos Gil, Jose Ignacio ;
Pacetti, Ariel .
MATHEMATICS OF COMPUTATION, 2017, 86 (306) :1949-1978
[10]  
Chen H., 2016, THESIS