Periodic points for area-preserving birational maps of surfaces

被引:10
|
作者
Iwasaki, Katsunori [1 ]
Uehara, Takato [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, Higashi Ku, Fukuoka 8128581, Japan
关键词
ELLIPTIC COMPLEXES; HOLOMORPHIC MAPS; FORMULA; CURVES; DYNAMICS; INDEXES;
D O I
10.1007/s00209-009-0570-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is a basic problem to count the number of periodic points of a surface mapping, since the growth rate of this number as the period tends to infinity is an important dynamical invariant. However, this problem becomes difficult when the map admits curves of periodic points. In this situation we give a precise estimate of the number of isolated periodic points for an area-preserving birational map of a projective complex surface.
引用
收藏
页码:289 / 318
页数:30
相关论文
共 50 条
  • [1] PERIODIC POINTS OF BIRATIONAL TRANSFORMATIONS ON PROJECTIVE SURFACES
    Xie Junyi
    DUKE MATHEMATICAL JOURNAL, 2015, 164 (05) : 903 - 932
  • [2] SPECTRAL PROPERTIES OF RENORMALIZATION FOR AREA-PRESERVING MAPS
    Gaidashev, Denis
    Johnson, Tomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3651 - 3675
  • [3] RIGIDITY FOR INFINITELY RENORMALIZABLE AREA-PRESERVING MAPS
    Gaidashev, D.
    Johnson, T.
    Martens, M.
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (01) : 129 - 159
  • [4] Secondary nontwist phenomena in area-preserving maps
    Vieira Abud, C.
    Caldas, I. L.
    CHAOS, 2012, 22 (03)
  • [5] Trajectories associated with parabolic and hyperbolic periodic points of piecewise linear area-preserving map
    Gu, En-Guo
    Li, Bo
    Ni, Jun
    He, Zhao Hui
    CHAOS SOLITONS & FRACTALS, 2024, 178
  • [6] Records and Occupation Time Statistics for Area-Preserving Maps
    Artuso, Roberto
    de Oliveira, Tulio M. M.
    Manchein, Cesar
    ENTROPY, 2023, 25 (02)
  • [7] A numerical study of infinitely renormalizable area-preserving maps
    Gaidashev, Denis
    Johnson, Tomas
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (03): : 283 - 301
  • [8] Fractal structures in the parameter space of nontwist area-preserving maps
    Mathias, A. C.
    Mugnaine, M.
    Santos, M. S.
    Szezech, J. D., Jr.
    Caldas, I. L.
    Viana, R. L.
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [9] Periodic Points for Sphere Maps Preserving Monopole Foliations
    Graff, Grzegorz
    Misiurewicz, Michal
    Nowak-Przygodzki, Piotr
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (02) : 533 - 546
  • [10] Area-Preserving Hierarchical NURBS Surfaces Computed by the Optimal Freeform Transformation
    Li, Xiao-Wei
    Yang, Yi-Jun
    Zeng, Wei
    Bi, Yu-Li
    Xu, Jin-Lan
    Xu, Gang
    Zhang, Xing-Jun
    COMPUTER-AIDED DESIGN, 2022, 143