INTERPRETABLE SCENICNESS FROM SENTINEL-2 IMAGERY

被引:7
作者
Levering, Alex [1 ]
Marcos, Diego [1 ]
Lobry, Sylvain [1 ]
Tuia, Devis [1 ]
机构
[1] Wageningen Univ, Lab Geoinformat Sci & Remote Sensing, Wageningen, Netherlands
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
关键词
Remote Sensing; Interpretability; Deep Learning; Scenicness; landcover; Explainable AI;
D O I
10.1109/IGARSS39084.2020.9323706
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Landscape aesthetics, or scenicness, has been identified as an important ecosystem service that contribute to human health and well-being. Currently there are no methods to inventorize landscape scenicness on a large scale. In this paper we study how to upscale local assessments of scenicness provided by human observers, and we do so by using satellite images. Moreover, we develop an explicitly interpretable CNN model that allows assessing the connections between landscape scenicness and the presence of specific landcover types. To generate the landscape scenicness ground truth, we use the ScenicOrNot crowdsourcing database, which provides geo-referenced, human-based scenicness estimates for ground based photos in Great Britain. Our results show that it is feasible to predict landscape scenicness based on satellite imagery. The interpretable model performs comparably to an unconstrained model, suggesting that it is possible to learn a semantic bottleneck that represents well the present landcover classes and still contains enough information to accurately predict the location's scenicness.
引用
收藏
页码:3983 / 3986
页数:4
相关论文
共 17 条
  • [1] Contributions of cultural services to the ecosystem services agenda
    Daniel, Terry C.
    Muhar, Andreas
    Arnberger, Arne
    Aznar, Olivier
    Boyd, James W.
    Chan, Kai M. A.
    Costanza, Robert
    Elmqvist, Thomas
    Flint, Courtney G.
    Gobster, Paul H.
    Gret-Regamey, Adrienne
    Lave, Rebecca
    Muhar, Susanne
    Penker, Marianne
    Ribe, Robert G.
    Schauppenlehner, Thomas
    Sikor, Thomas
    Soloviy, Ihor
    Spierenburg, Marja
    Taczanowska, Karolina
    Tam, Jordan
    von der Dunk, Andreas
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (23) : 8812 - 8819
  • [2] EU Copernicus Program, 2018, CLC 2018 COP LAND MO
  • [3] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [4] Krippendorf Jost., 1984, Die Ferienmenschen: Fur ein neues Verstandnis von Freizeit und Reisen
  • [5] Marcos D., 2019, ICCVW 2019
  • [6] Explanation in artificial intelligence: Insights from the social sciences
    Miller, Tim
    [J]. ARTIFICIAL INTELLIGENCE, 2019, 267 : 1 - 38
  • [7] Samek W., 2019, EXPLAINABLE INTERPRE, V11700, P5, DOI [10.1007/978-3-030-28954-6_1, DOI 10.1007/978-3-030-28954-6_1]
  • [8] Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
    Selvaraju, Ramprasaath R.
    Cogswell, Michael
    Das, Abhishek
    Vedantam, Ramakrishna
    Parikh, Devi
    Batra, Dhruv
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 618 - 626
  • [9] Happiness is Greater in More Scenic Locations
    Seresinhe, Chanuki Illushka
    Preis, Tobias
    MacKerron, George
    Moat, Helen Susannah
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] Using deep learning to quantify the beauty of outdoor places
    Seresinhe, Chanuki Illushka
    Preis, Tobias
    Moat, Helen Susannah
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (07):