Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap -: art. no. 046706

被引:46
作者
Dion, CM [1 ]
Cancès, E [1 ]
机构
[1] Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Marne La Vallee, France
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 04期
关键词
D O I
10.1103/PhysRevE.67.046706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the numerical resolution of the time-dependent Gross-Pitaevskii equation, a nonlinear Schrodinger equation used to simulate the dynamics of Bose-Einstein condensates. Considering condensates trapped in harmonic potentials, we present an efficient algorithm by making use of a spectral-Galerkin method, using a basis set of harmonic-oscillator functions, and the Gauss-Hermite quadrature. We apply this algorithm to the simulation of condensate breathing and scissor modes.
引用
收藏
页码:9 / 467069
页数:9
相关论文
共 44 条
[1]   Numerical study of the spherically symmetric Gross-Pitaevskii equation in two space dimensions [J].
Adhikari, SK .
PHYSICAL REVIEW E, 2000, 62 (02) :2937-2944
[2]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[3]   Accurate and efficient evolution of nonlinear Schrodinger equations [J].
Baer, R .
PHYSICAL REVIEW A, 2000, 62 (06) :063810-063811
[4]   Theory of an output coupler for Bose-Einstein condensed atoms [J].
Ballagh, RJ ;
Burnett, K ;
Scott, TF .
PHYSICAL REVIEW LETTERS, 1997, 78 (09) :1607-1611
[5]   Coherent evolution of bouncing Bose-Einstein condensates [J].
Bongs, K ;
Burger, S ;
Birkl, G ;
Sengstock, K ;
Ertmer, W ;
Rzazewski, K ;
Sanpera, A ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (18) :3577-3580
[6]   EVIDENCE OF BOSE-EINSTEIN CONDENSATION IN AN ATOMIC GAS WITH ATTRACTIVE INTERACTIONS [J].
BRADLEY, CC ;
SACKETT, CA ;
TOLLETT, JJ ;
HULET, RG .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1687-1690
[7]  
Cancès E, 2000, INT J QUANTUM CHEM, V79, P82, DOI 10.1002/1097-461X(2000)79:2<82::AID-QUA3>3.0.CO
[8]  
2-I
[9]  
Cances E., 2000, MATH MODELS METHODS, V74, P17
[10]  
CANCES E, UNPUB