Direct observation of resistive heating at graphene wrinkles and grain boundaries

被引:50
作者
Grosse, Kyle L. [1 ]
Dorgan, Vincent E. [1 ]
Estrada, David [1 ]
Wood, Joshua D. [1 ]
Vlassiouk, Ivan [2 ]
Eres, Gyula [3 ]
Lyding, Joseph W. [1 ]
King, William P. [1 ,4 ]
Pop, Eric [1 ,5 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[4] Univ Illinois, Mat Sci & Engn & Mat Res Lab, Urbana, IL 61801 USA
[5] Stanford Univ, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
ELECTRICAL-TRANSPORT; VAPOR; FILMS;
D O I
10.1063/1.4896676
中图分类号
O59 [应用物理学];
学科分类号
摘要
We directly measure the nanometer-scale temperature rise at wrinkles and grain boundaries (GBs) in functioning graphene devices by scanning Joule expansion microscopy with similar to 50 nm spatial and similar to 0.2K temperature resolution. We observe a small temperature increase at select wrinkles and a large (similar to 100 K) temperature increase at GBs between coalesced hexagonal grains. Comparisons of measurements with device simulations estimate the GB resistivity (8-150 Omega mu m) among the lowest reported for graphene grown by chemical vapor deposition. An analytical model is developed, showing that GBs can experience highly localized resistive heating and temperature rise, most likely affecting the reliability of graphene devices. Our studies provide an unprecedented view of thermal effects surrounding nanoscale defects in nanomaterials such as graphene. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film [J].
Ahmad, Muneer ;
An, Hyosub ;
Kim, Yong Seung ;
Lee, Jae Hong ;
Jung, Jongwan ;
Chun, Seung-Hyun ;
Seo, Yongho .
NANOTECHNOLOGY, 2012, 23 (28)
[2]   Ballistic to diffusive crossover of heat flow in graphene ribbons [J].
Bae, Myung-Ho ;
Li, Zuanyi ;
Aksamija, Zlatan ;
Martin, Pierre N. ;
Xiong, Feng ;
Ong, Zhun-Yong ;
Knezevic, Irena ;
Pop, Eric .
NATURE COMMUNICATIONS, 2013, 4
[3]   Scaling of High-Field Transport and Localized Heating in Graphene Transistors [J].
Bae, Myung-Ho ;
Islam, Sharnali ;
Dorgan, Vincent E. ;
Pop, Eric .
ACS NANO, 2011, 5 (10) :7936-7944
[4]   Imaging, Simulation, and Electrostatic Control of Power Dissipation in Graphene Devices [J].
Bae, Myung-Ho ;
Ong, Zhun-Yong ;
Estrada, David ;
Pop, Eric .
NANO LETTERS, 2010, 10 (12) :4787-4793
[5]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[6]   Transport in Nanoribbon Interconnects Obtained from Graphene Grown by Chemical Vapor Deposition [J].
Behnam, Ashkan ;
Lyons, Austin S. ;
Bae, Myung-Ho ;
Chow, Edmond K. ;
Islam, Sharnali ;
Neumann, Christopher M. ;
Pop, Eric .
NANO LETTERS, 2012, 12 (09) :4424-4430
[7]   Spatially Resolved Mapping of Electrical Conductivity across Individual Domain (Grain) Boundaries in Graphene [J].
Clark, Kendal W. ;
Zhang, X. -G. ;
Vlassiouk, Ivan V. ;
He, Guowei ;
Feenstra, Randall M. ;
Li, An-Ping .
ACS NANO, 2013, 7 (09) :7956-7966
[8]   Charge Transport in Polycrystalline Graphene: Challenges and Opportunities [J].
Cummings, Aron W. ;
Dinh Loc Duong ;
Van Luan Nguyen ;
Dinh Van Tuan ;
Kotakoski, Jani ;
Barrios Vargas, Jose Eduardo ;
Lee, Young Hee ;
Roche, Stephan .
ADVANCED MATERIALS, 2014, 26 (30) :5079-5094
[9]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475
[10]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470