Fused Lasso approach in portfolio selection

被引:21
作者
Corsaro, Stefania [1 ]
De Simone, Valentina [2 ]
Marino, Zelda [1 ]
机构
[1] Univ Naples Parthenope, Dept Management & Quantitat Studies, Naples, Italy
[2] Univ Campania Luigi Vanvitelli, Dept Math & Phys, Caserta, Italy
关键词
Multi-period portfolio optimization; <mml; math><mml; msub><mml; mi>l</mml; mi><mml; mn>1</mml; mn></mml; msub></mml; math>; documentclass[12pt]{minimal}; usepackage{amsmath}; usepackage{wasysym}; usepackage{amsfonts}; usepackage{amssymb}; usepackage{amsbsy}; usepackage{mathrsfs}; usepackage{upgreek}; setlength{; oddsidemargin}{-69pt}; begin{document}$$l_1$$; end{document}<inline-graphic xlink; href="10479_2019_3289_Article_IEq2; gif; >-norm; Constrained optimization; Split Bregman; TRANSACTION COSTS;
D O I
10.1007/s10479-019-03289-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work we present a new model based on a fused Lasso approach for the multi-period portfolio selection problem in a Markowitz framework. In a multi-period setting, the investment period is partitioned into sub-periods, delimited by the rebalancing dates at which decisions are taken. The model leads to a constrained optimization problem. Two l1penalty terms are introduced into the objective function to reduce the costs of the investment strategy. The former is applied to portfolio weights, encouraging sparse solutions. The latter is a penalization on the difference of wealth allocated across the assets between rebalancing dates, thus it preserves the pattern of active positions with the effect of limiting the number of transactions. We solve the problem by means of the Split Bregman iteration. We show results of numerical tests performed on real data to validate our model.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 27 条
  • [1] Comparison of minimization methods for nonsmooth image segmentation
    Antonelli, L.
    De Simone, V.
    [J]. COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2018, 9 (01) : 68 - 86
  • [2] Passive portfolio management over a finite horizon with a target liquidation value under transaction costs and solvency constraints
    Baccarin, Stefano
    Marazzina, Daniele
    [J]. IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2016, 27 (04) : 471 - 504
  • [3] Optimal impulse control of a portfolio with a fixed transaction cost
    Baccarin, Stefano
    Marazzina, Daniele
    [J]. CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2014, 22 (02) : 355 - 372
  • [4] 2-POINT STEP SIZE GRADIENT METHODS
    BARZILAI, J
    BORWEIN, JM
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) : 141 - 148
  • [5] FOM - a MATLAB toolbox of first-order methods for solving convex optimization problems
    Beck, Amir
    Guttmann-Beck, Nili
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (01) : 172 - 193
  • [6] An Investigation of Aided Language Stimulation: Does it Increase AAC Use with Adults with Developmental Disabilities and Complex Communication Needs?
    Beck, Ann R.
    Stoner, Julia B.
    Dennis, Marcia L.
    [J]. AUGMENTATIVE AND ALTERNATIVE COMMUNICATION, 2009, 25 (01) : 42 - 54
  • [7] Boyd Stephen, 2014, Foundations and Trends in Optimization, V1, P1, DOI 10.1561/2400000001
  • [8] Bregman L., 1967, USSR Comput. Math. Math. Phys, V7, P200, DOI 10.1016/0041-5553(67)90040-7
  • [9] Sparse and stable Markowitz portfolios
    Brodie, Joshua
    Daubechies, Ingrid
    De Mol, Christine
    Giannone, Domenico
    Loris, Ignace
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (30) : 12267 - 12272
  • [10] Corsaro S., 2018, ARXIV180901460