Superintegrability and higher order integrals for quantum systems

被引:48
作者
Kalnins, E. G. [1 ]
Kress, J. M. [2 ]
Miller, W., Jr. [3 ]
机构
[1] Univ Waikato, Dept Math, Hamilton, New Zealand
[2] Univ New S Wales, Sch Math & Stat, Sydney, NSW, Australia
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
SEARCH;
D O I
10.1088/1751-8113/43/26/265205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We refine a method for finding a canonical form of symmetry operators of arbitrary order for the Schrodinger eigenvalue equation II Psi (Delta(2) + V) Psi = E Psi on any 2D Riemannian manifold, real or complex, that admits a separation of variables in some orthogonal coordinate system. The flat space equations with potentials V = alpha(x + iy)(k-1)/(x - iy)(k+1) in Cartesian coordinates, and V = ar(2) + beta/r(2) cos(2) k theta + gamma/r(2) sin(2) k theta (the Tremblay, Turbiner and Winternitz system) in polar coordinates, have each been shown to be classically superintegrable for all rational numbers k. We apply the canonical operator method to give a constructive proof that each of these systems is also quantum superintegrable for all rational k. We develop the classical analog of the quantum canonical form for a symmetry. It is clear that our methods will generalize to other Hamiltonian systems.
引用
收藏
页数:21
相关论文
共 25 条
[1]   Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold [J].
Daskaloyannis, C ;
Ypsilantis, K .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (04)
[2]  
EASTWOOD M, 2008, IMA VOLUMES MATH ITS, V144
[3]   Separable systems of Stackel [J].
Eisenhart, LP .
ANNALS OF MATHEMATICS, 1934, 35 :284-305
[4]   Superintegrability of the caged anisotropic oscillator [J].
Evans, N. W. ;
Verrier, P. E. .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (09)
[5]   Hamiltonians separable in Cartesian coordinates and third-order integrals of motion [J].
Gravel, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) :1003-1019
[6]   COUPLING-CONSTANT METAMORPHOSIS AND DUALITY BETWEEN INTEGRABLE HAMILTONIAN-SYSTEMS [J].
HIETARINTA, J ;
GRAMMATICOS, B ;
DORIZZI, B ;
RAMANI, A .
PHYSICAL REVIEW LETTERS, 1984, 53 (18) :1707-1710
[7]   DIRECT METHODS FOR THE SEARCH OF THE 2ND INVARIANT [J].
HIETARINTA, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 147 (02) :87-154
[8]   Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems [J].
Kalnins, E. G. ;
Kress, J. M. ;
Miller, W., Jr. .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (09)
[9]   Families of classical subgroup separable superintegrable systems [J].
Kalnins, E. G. ;
Kress, J. M. ;
Miller, W., Jr. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (09)
[10]   Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics [J].
Kalnins, E. G. ;
Miller, W., Jr. ;
Post, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (03)