Compact Plasmonic Distributed-Feedback Lasers as Dark Sources of Surface Plasmon Polaritons

被引:7
作者
Brechbuhler, Raphael [1 ]
Vonk, Sander J. W. [1 ,2 ]
Aellen, Marianne [1 ]
Lassaline, Nolan [1 ]
Keitel, Robert C. [1 ]
Cocina, Ario [1 ]
Rossinelli, Aurelio A. [1 ]
Rabouw, Freddy T. [1 ,2 ]
Norris, David J. [1 ]
机构
[1] Swiss Fed Inst Technol, Opt Mat Engn Lab, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[2] Univ Utrecht, Debye Inst Nanomat Sci, NL-3584 Utrecht, Netherlands
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
plasmonic laser; distributed feedback; spaser; surface-relief gratings; semiconductor nanoplatelets; plasmonics; GENERATION; LIGHT;
D O I
10.1021/acsnano.1c01338
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic modes in optical cavities can be amplified through stimulated emission. Using this effect, plasmonic lasers can potentially provide chip-integrated sources of coherent surface plasmon polaritons (SPPs). However, while plasmonic lasers have been experimentally demonstrated, they have not generated propagating plasmons as their primary output signal. Instead, plasmonic lasers typically involve significant emission of free-space photons that are intentionally outcoupled from the cavity by Bragg diffraction or that leak from reflector edges due to uncontrolled scattering. Here, we report a simple cavity design that allows for straightforward extraction of the lasing mode as SPPs while minimizing photon leakage. We achieve plasmonic lasing in 10-mu m-long distributed-feedback cavities consisting of a Ag surface periodically patterned with ridges coated by a thin layer of colloidal semiconductor nanoplatelets as the gain material. The diffraction to free-space photons from cavities designed with second-order feedback allows a direct experimental examination of the lasing-mode profile in real- and momentum-space, in good agreement with coupled-wave theory. In contrast, we demonstrate that first-order-feedback cavities remain "dark" above the lasing threshold and the output signal leaves the cavity as propagating SPPs, highlighting the potential of such lasers as on-chip sources of plasmons.
引用
收藏
页码:9935 / 9944
页数:10
相关论文
共 45 条
[11]   Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons [J].
Giannattasio, A ;
Hooper, IR ;
Barnes, WL .
OPTICS COMMUNICATIONS, 2006, 261 (02) :291-295
[12]   Plasmonics beyond the diffraction limit [J].
Gramotnev, Dmitri K. ;
Bozhevolnyi, Sergey I. .
NATURE PHOTONICS, 2010, 4 (02) :83-91
[13]  
Grim JQ, 2014, NAT NANOTECHNOL, V9, P891, DOI [10.1038/NNANO.2014.213, 10.1038/nnano.2014.213]
[14]   Spatial Intensity Distribution in Plasmonic Particle Array Lasers [J].
Guo, Ke ;
Koenderink, A. Femius .
PHYSICAL REVIEW APPLIED, 2019, 11 (02)
[15]   Nano-opto-electro-mechanical switches operated at CMOS-level voltages [J].
Haffner, Christian ;
Joerg, Andreas ;
Doderer, Michael ;
Mayor, Felix ;
Chelladurai, Daniel ;
Fedoryshyn, Yuriy ;
Roman, Cosmin Ioan ;
Mazur, Mikael ;
Burla, Maurizio ;
Lezec, Henri J. ;
Aksyuk, Vladimir A. ;
Leuthold, Juerg .
SCIENCE, 2019, 366 (6467) :860-+
[16]   OBSERVATION OF DESTRUCTIVE INTERFERENCE IN THE RADIATION LOSS OF 2ND-ORDER DISTRIBUTED FEEDBACK LASERS [J].
HENRY, CH ;
KAZARINOV, RF ;
LOGAN, RA ;
YEN, R .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1985, 21 (02) :151-154
[17]   Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides [J].
Hill, Martin T. ;
Marell, Milan ;
Leong, Eunice S. P. ;
Smalbrugge, Barry ;
Zhu, Youcai ;
Sun, Minghua ;
van Veldhoven, Peter J. ;
Geluk, Erik Jan ;
Karouta, Fouad ;
Oei, Yok-Siang ;
Notzel, Richard ;
Ning, Cun-Zheng ;
Smit, Meint K. .
OPTICS EXPRESS, 2009, 17 (13) :11107-11112
[18]  
Kauranen M, 2012, NAT PHOTONICS, V6, P737, DOI [10.1038/nphoton.2012.244, 10.1038/NPHOTON.2012.244]
[19]   2ND-ORDER DISTRIBUTED FEEDBACK LASERS WITH MODE SELECTION PROVIDED BY 1ST-ORDER RADIATION LOSSES [J].
KAZARINOV, RF ;
HENRY, CH .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1985, 21 (02) :144-150
[20]   Single-mode surface plasmon distributed feedback lasers [J].
Keshmarzi, Elham Karami ;
Tait, R. Niall ;
Berini, Pierre .
NANOSCALE, 2018, 10 (13) :5914-5922