Gyrokinetic modelling of stationary electron and impurity profiles in tokamaks

被引:6
作者
Skyman, A. [1 ]
Tegnered, D. [1 ]
Nordman, H. [1 ]
Strand, P. [1 ]
机构
[1] Chalmers Univ Technol, Dept Earth & Space Sci, Euratom VR Assoc, SE-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
TRANSPORT;
D O I
10.1063/1.4894739
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Particle transport due to Ion Temperature Gradient (ITG)/Trapped Electron Mode (TEM) turbulence is investigated using the gyrokinetic code GENE. Both a reduced quasilinear treatment and nonlinear simulations are performed for typical tokamak parameters corresponding to ITG dominated turbulence. The gyrokinetic results are compared and contrasted with results from a computationally efficient fluid model. A selfconsistent treatment is used, where the stationary local profiles are calculated corresponding to zero particle flux simultaneously for electrons and trace impurities. The scaling of the stationary profiles with magnetic shear, safety factor, electron-to-ion temperature ratio, collisionality, toroidal sheared rotation, plasma beta, triangularity, and elongation is investigated. In addition, the effect of different main ion mass on the zero flux condition is discussed. The electron density gradient can significantly affect the stationary impurity profile scaling. It is therefore expected that a selfconsistent treatment will yield results more comparable to experimental results for parameter scans where the stationary background density profile is sensitive. This is shown to be the case in scans over magnetic shear, collisionality, elongation, and temperature ratio, for which the simultaneous zero flux electron and impurity profiles are calculated. A slight asymmetry between hydrogen, deuterium, and tritium with respect to profile peaking is obtained, in particular, for scans in collisionality and temperature ratio.
引用
收藏
页数:10
相关论文
共 39 条
  • [1] Direction of impurity pinch and auxiliary heating in tokamak plasmas
    Angioni, C
    Peeters, AG
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (09)
  • [2] Collisionality dependence of density peaking in quasilinear gyrokinetic calculations
    Angioni, C
    Peeters, AG
    Jenko, F
    Dannert, T
    [J]. PHYSICS OF PLASMAS, 2005, 12 (11) : 1 - 7
  • [3] Off-diagonal particle and toroidal momentum transport: a survey of experimental, theoretical and modelling aspects
    Angioni, C.
    Camenen, Y.
    Casson, F. J.
    Fable, E.
    McDermott, R. M.
    Peeters, A. G.
    Rice, J. E.
    [J]. NUCLEAR FUSION, 2012, 52 (11)
  • [4] Gyrokinetic modelling of electron and boron density profiles of H-mode plasmas in ASDEX Upgrade
    Angioni, C.
    McDermott, R. M.
    Fable, E.
    Fischer, R.
    Puetterich, T.
    Ryter, F.
    Tardini, G.
    [J]. NUCLEAR FUSION, 2011, 51 (02)
  • [5] Particle transport in tokamak plasmas, theory and experiment
    Angioni, C.
    Fable, E.
    Greenwald, M.
    Maslov, M.
    Peeters, A. G.
    Takenaga, H.
    Weisen, H.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
  • [6] Particle pinch and collisionality in gyrokinetic simulations of tokamak plasma turbulence
    Angioni, C.
    Candy, J.
    Fable, E.
    Maslov, M.
    Peeters, A. G.
    Waltz, R. E.
    Weisen, H.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (06)
  • [7] Gyrokinetic simulations of impurity, He ash and α particle transport and consequences on ITER transport modelling
    Angioni, C.
    Peeters, A. G.
    Pereverzev, G. V.
    Bottino, A.
    Candy, J.
    Dux, R.
    Fable, E.
    Hein, T.
    Waltz, R. E.
    [J]. NUCLEAR FUSION, 2009, 49 (05)
  • [8] Gyrokinetic calculations of diffusive and convective transport of α particles with a slowing-down distribution function
    Angioni, C.
    Peeters, A. G.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (05)
  • [9] Turbulent flux and the diffusion of passive tracers in electrostatic turbulence
    Basu, R
    Jessen, T
    Naulin, V
    Rasmussen, JJ
    [J]. PHYSICS OF PLASMAS, 2003, 10 (07) : 2696 - 2703
  • [10] A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas
    Bourdelle, C.
    Garbet, X.
    Imbeaux, F.
    Casati, A.
    Dubuit, N.
    Guirlet, R.
    Parisot, T.
    [J]. PHYSICS OF PLASMAS, 2007, 14 (11)