Energy-based Control of a Wave Equation with Boundary Anti-damping

被引:3
作者
Macchelli, A. [1 ]
Le Gorrec, Y. [2 ]
Wu, Y. [2 ]
Ramirez, H. [3 ]
机构
[1] Univ Bologna, Dept Elect Elect & Informat Engn, Viale Risorgimento 2, I-40136 Bologna, Italy
[2] Univ Bourgogne Franche Comte, CNRS, AS2M Dept, FEMTO ST Inst, 24 Rue Alain Savary, Besancon, France
[3] Univ Tecn Federico Santa Maria, Dept Elect, Ave Espana 1680, Valparaiso, Chile
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
基金
欧盟地平线“2020”;
关键词
distributed parameter systems; port-Hamiltonian systems; unstable wave equation; passivity-based control; DIRAC STRUCTURES; SYSTEMS;
D O I
10.1016/j.ifacol.2020.12.1527
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the asymptotic boundary stabilisation of a one-dimensional wave equation subject to anti-damping at its free end and with control at the opposite one. The control action, implemented through a state feedback or a dynamic controller, is derived by using the port-Hamiltonian framework. More precisely, the standard energy-shaping approach plus damping assignment is adapted to cope with infinite dimensional systems with anti-damping boundary conditions. It is shown how to modify the equivalent dynamic controller to account for the instability propagation along the domain. Copyright (C) 2020 The Authors.
引用
收藏
页码:7740 / 7745
页数:6
相关论文
共 50 条
  • [21] STABILITY OF THE WAVE EQUATION WITH LOCALIZED KELVIN-VOIGT DAMPING AND BOUNDARY DELAY FEEDBACK
    Nicaise, Serge
    Pignotti, Cristina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (03): : 791 - 813
  • [22] Energy-based control of a distributed solar collector field
    Johansen, TA
    Storaa, C
    AUTOMATICA, 2002, 38 (07) : 1191 - 1199
  • [23] Learning the Optimal Energy-based Control Strategy for Port-Hamiltonian Systems
    Zanella, Riccardo
    Macchelli, Alessandro
    Stramigioli, Stefano
    IFAC PAPERSONLINE, 2024, 58 (06): : 208 - 213
  • [24] Energy-based modelling and control of wind energy conversion system with DFIG
    Song, H. H.
    Qu, Y. B.
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (02) : 281 - 292
  • [25] Local energy decay for the wave equation with a nonlinear time-dependent damping
    Bchatnia, Ahmed
    Daoulatli, Moez
    APPLICABLE ANALYSIS, 2013, 92 (11) : 2288 - 2308
  • [26] ON THE CONTROL OF THE WAVE EQUATION BY MEMORY-TYPE BOUNDARY CONDITION
    Mustafa, Muhammad I.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) : 1179 - 1192
  • [27] Energy-shaping and entropy-assignment boundary control of the heat equation
    Mora, Luis A.
    Le Gorrec, Yann
    Ramirez, Hector
    SYSTEMS & CONTROL LETTERS, 2024, 189
  • [28] A note on the wave equation controlled with a dynamic saturating boundary control
    Gauvrit, Mario
    Prieur, Christophe
    Tarbouriech, Sophie
    IFAC PAPERSONLINE, 2023, 56 (01): : 108 - 113
  • [29] Finite-Dimensional Boundary Control of a Wave Equation With Viscous Friction and Boundary Measurements
    Selivanov, Anton
    Fridman, Emilia
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (05) : 3182 - 3189
  • [30] Energy-based modeling and robust position control of a dielectric elastomer cardiac assist device
    Hammond, Amal
    Liu, Ning
    Le Gorrec, Yann
    Civet, Yoan
    Perriard, Yves
    IFAC PAPERSONLINE, 2024, 58 (06): : 25 - 30