Region of variability of two subclasses of univalent functions

被引:29
作者
Ponnusamy, S. [1 ]
Vasudevarao, A. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
关键词
analytic; univalent; close-to-convex; starlike functions; variability region;
D O I
10.1016/j.jmaa.2006.11.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F-1 (F-2 respectively) denote the class of analytic functions f in the unit disk vertical bar z vertical bar < I with f (0) 0 = f'(0) - 1 satisfying the condition Re P-f (z) < 3/2 (Re P-f (z) > -1/2 respectively) in vertical bar z vertical bar < 1, where P-f (z) = 1 +zf ''(z)/f'(z). For any fixed z(0) in the unit disk and lambda is an element of [0, 1]),we shall determine the region of variability for log f'(z(0)) when f ranges over the class {f is an element of F-1: f ''(0)= -lambda} and {f is an element of F-2: f ''(0) = 3 lambda}, respectively. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1323 / 1334
页数:12
相关论文
共 11 条
  • [1] BECKER J, 1984, J REINE ANGEW MATH, V354, P74
  • [2] Norm estimates for the Alexander transforms of convex functions of order alpha
    Choi, JH
    Kim, YC
    Ponnusamy, S
    Sugawa, T
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (02) : 661 - 668
  • [3] Duren P. L., 1983, GRUNDLEHREN MATH WIS, V259
  • [4] Goodman A.W, 1983, Univalent functions, VII
  • [5] Goodman A. W., 1983, Univalent functions, VI and II
  • [6] APPLICATIONS OF EXTREME POINT THEORY TO CLASSES OF MULTIVALENT FUNCTIONS
    HALLENBECK, DJ
    LIVINGSTON, AE
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 221 (02) : 339 - 359
  • [7] Mapping properties of nonlinear integral operators and pre-Schwarzian derivatives
    Kim, YC
    Ponnusamy, S
    Sugawa, T
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (02) : 433 - 447
  • [8] PONNUSAMY S, 1996, GLASNIK MATEMATIYKI, V31, P253
  • [9] Ponnusamy S., 1995, Soochow J. Math, V21, P193
  • [10] Yanagihara H., 2005, Kodai Math. J., V28, P452, DOI DOI 10.2996/KMJ/1123767023