Piecewise Flat Embeddings for Hyperspectral Image Analysis

被引:0
|
作者
Hayes, Tyler L. [1 ,2 ]
Imeinhold, Renee T. [2 ]
Hamilton, John F. [2 ]
Cahill, Nathan D. [2 ]
机构
[1] Rochester Inst Technol, Chester F Carlson Ctr Imaging Sci, Rochester, NY 14623 USA
[2] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
关键词
Dimensionality Reduction; Hyperspectral u n gery; Laplacian Eigenmaps; Piecewise Flat Embed dings; Segmentation; Classification; EIGENMAPS;
D O I
10.1117/12.2262302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Graph-based dimensionality reduction techniques such as Laplacian Eigenmaps (LE), Local Linear Embedding (LLE), Isometric Feature Mapping (ISOMAP), and Kernel Principal Components Analysis (KPCA) have been used in a variety of hyperspectral image analysis applications for generating smooth data embeddings. Recently, Piecewise Flat Embeddings (PIKE) were introduced in the computer vision community as a technique for generating constant eitibeddings that make data clustering / image segmentation a straightforward process. In this paper, we show how PFE arises by modifying I I yielding- a constrained l(1)-minimization problem that can be solved iteratively. Using publicly available data, we carry out experiments to illustrate the implications of applying PEE to pixel-based hyperspectral image clustering and classification.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Piecewise flat gravitational waves
    van de Meent, Maarten
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (07)
  • [32] ON THE CURVATURE OF PIECEWISE FLAT SPACES
    CHEEGER, J
    MULLER, W
    SCHRADER, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 92 (03) : 405 - 454
  • [33] Analysis of Pregerminated Barley Using Hyperspectral Image Analysis
    Arngren, Morten
    Hansen, Per Waaben
    Eriksen, Birger
    Larsen, Jan
    Larsen, Rasmus
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2011, 59 (21) : 11385 - 11394
  • [34] Nontrivial Isometric Embeddings for Flat Spaces
    Paston, Sergey
    Zaitseva, Taisiia
    UNIVERSE, 2021, 7 (12)
  • [35] Morphological Principal Component Analysis for Hyperspectral Image Analysis
    Franchi, Gianni
    Angulo, Jesus
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2016, 5 (06)
  • [36] NORMAL STRUCTURES FOR LOCALLY FLAT EMBEDDINGS
    MILLETT, KC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) : 580 - &
  • [37] Hyperbolic Image Embeddings
    Khrulkov, Valentin
    Mirvakhabova, Leyla
    Ustinova, Evgeniya
    Oseledets, Ivan
    Lempitsky, Victor
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6417 - 6427
  • [38] Embeddings of interval exchange transformations into planar piecewise isometries
    Ashwin, Peter
    Goetz, Arek
    Peres, Pedro
    Rodrigues, Ana
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (05) : 1153 - 1179
  • [39] Exploration of virtual dimensionality in hyperspectral image analysis
    Chang, Chein-I
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [40] MULTIPLE INSTANCE LEARNING FOR HYPERSPECTRAL IMAGE ANALYSIS
    Bolton, Jeremy
    Gader, Paul
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4232 - 4235