Piecewise Flat Embeddings for Hyperspectral Image Analysis

被引:0
|
作者
Hayes, Tyler L. [1 ,2 ]
Imeinhold, Renee T. [2 ]
Hamilton, John F. [2 ]
Cahill, Nathan D. [2 ]
机构
[1] Rochester Inst Technol, Chester F Carlson Ctr Imaging Sci, Rochester, NY 14623 USA
[2] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
关键词
Dimensionality Reduction; Hyperspectral u n gery; Laplacian Eigenmaps; Piecewise Flat Embed dings; Segmentation; Classification; EIGENMAPS;
D O I
10.1117/12.2262302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Graph-based dimensionality reduction techniques such as Laplacian Eigenmaps (LE), Local Linear Embedding (LLE), Isometric Feature Mapping (ISOMAP), and Kernel Principal Components Analysis (KPCA) have been used in a variety of hyperspectral image analysis applications for generating smooth data embeddings. Recently, Piecewise Flat Embeddings (PIKE) were introduced in the computer vision community as a technique for generating constant eitibeddings that make data clustering / image segmentation a straightforward process. In this paper, we show how PFE arises by modifying I I yielding- a constrained l(1)-minimization problem that can be solved iteratively. Using publicly available data, we carry out experiments to illustrate the implications of applying PEE to pixel-based hyperspectral image clustering and classification.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Hyperspectral image analysis for precision viticulture
    Ferreiro-Arman, M.
    Da Costa, J. -P.
    Homayouni, S.
    Martin-Herrero, J.
    IMAGE ANALYSIS AND RECOGNITION, PT 2, 2006, 4142 : 730 - 741
  • [22] Hyperspectral image analysis for ophthalmic applications
    Zamora, G
    Truitt, PW
    Nemeth, SC
    Raman, B
    Soliz, P
    OPHTHALMIC TECHNOLOGIES XIV, 2004, 5314 : 138 - 149
  • [23] ON THE USE OF ICA FOR HYPERSPECTRAL IMAGE ANALYSIS
    Villa, A.
    Chanussot, J.
    Jutten, C.
    Benediktsson, J. A.
    Moussaoui, S.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2477 - +
  • [24] Hyperspectral image acquisition and analysis of skin
    Stamatas, GN
    Balas, C
    Kollias, N
    SPECTRAL IMAGING: INSTRUMENTATION, APPLICATIONS, AND ANALYSIS II, 2003, 4959 : 77 - 82
  • [25] A MATLAB toolbox for hyperspectral image analysis
    Arzuaga-Cruz, E
    Jimenez-Rodriguez, LO
    Velez-Reves, M
    Kaeli, D
    Rodriguez-Diaz, E
    Velazquez-Santana, HT
    Castrodad-Carrau, A
    Santos-Campis, LE
    Santiago, C
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 4839 - 4842
  • [26] CLOSE PIECEWISE LINEAR CODIMENSION ONE EMBEDDINGS
    ISRAEL, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A230 - A230
  • [27] Algorithms for Multispectral and Hyperspectral Image Analysis
    Kwon, Heesung
    Hu, Xiaofei
    Theiler, James
    Zare, Alina
    Gurram, Prudhvi
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2013, 2013
  • [28] HYPERSPECTRAL IMAGE SEGMENTATION FOR PAINT ANALYSIS
    Magro, Nathan
    Bonnici, Alexandra
    Cristina, Stefania
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1374 - 1378
  • [30] EQUIVALENCE OF CLOSE PIECEWISE-LINEAR EMBEDDINGS
    EDWARDS, RD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (06): : 976 - &