Rough bilinear fractional integrals with variable kernels

被引:12
|
作者
Chen, Jiecheng [1 ]
Fan, Dashan [2 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Wisconsin, Dept Math, Milwaukee, WI 53217 USA
基金
中国国家自然科学基金;
关键词
Bilinear operator; multilinear fractional integral; variable kernel; WEIGHTED NORM INEQUALITIES; OPERATORS;
D O I
10.1007/s11464-010-0061-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the rough bilinear fractional integral (B) over tilde (Omega,alpha)(f, g)(x) = integral(Rn) f(x + y)g(x - y) Omega(x, y')/vertical bar y vertical bar(n-alpha) dy, where 0 < alpha < n, Omega is homogeneous of degree zero on the y variable and satisfies Omega is an element of L(infinity)(R(n)) x L(s)(S(n-1)) for some s >= 1, and S(n-1) denotes the unit sphere of R(n). By assuming size conditions on Omega, we obtain several boundedness properties of (B) over tilde (Omega,alpha)(f, g): (B) over tilde (Omega,alpha) : L(p1) x L(p2) -> L(p), where 1/p = 1/p1 + 1/p2 - alpha/n. Our result extends a main theorem of Y. Ding and C. Lin [Math. Nachr., 2002, 246-247: 47-52].
引用
收藏
页码:369 / 378
页数:10
相关论文
共 50 条
  • [21] Compactness properties of commutators of bilinear fractional integrals
    Benyi, Arpad
    Damian, Wendolin
    Moen, Kabe
    Torres, Rodolfo H.
    MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) : 569 - 582
  • [22] VECTOR-VALUED INEQUALITIES FOR THE COMMUTATORS OF SINGULAR INTEGRALS WITH ROUGH KERNELS
    Tang, Lin
    Wu, Huoxiong
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (04) : 703 - 725
  • [23] The boundedness for commutators of maximal hypersingular integrals with rough kernels
    Chen YanPing
    Ding Yong
    Li Ran
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (04) : 707 - 728
  • [24] On Marcinkiewicz Integrals Associated to Compound Mappings with Rough Kernels
    Liu, Feng
    Wu, Huo Xiong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (07) : 1210 - 1230
  • [25] The boundedness for commutators of a class of maximal hypersingular integrals with variable kernels
    Chen, Yanping
    Ding, Yong
    Li, Ran
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (15) : 4918 - 4940
  • [26] Marcinkiewicz integrals with variable kernels on Hardy and weak Hardy spaces
    Tao, Xiangxing
    Yu, Xiao
    Zhang, Songyan
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2010, 8 (01): : 1 - 16
  • [27] A note on parameterized Marcinkiewicz integrals with variable kernels
    WANG Hui1 ZHANG Chun-jie2 1 Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities, 2009, (03) : 315 - 320
  • [28] Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals
    Grafakos, Loukas
    Wang, Zhidan
    Xue, Qingying
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
  • [29] A note on parameterized Marcinkiewicz integrals with variable kernels
    Hui Wang
    Chun-jie Zhang
    Applied Mathematics-A Journal of Chinese Universities, 2009, 24 : 315 - 320
  • [30] Lp Bounds for the Commutators of Oscillatory Singular Integrals with Rough Kernels
    Chen, Yanping
    Zhu, Kai
    ABSTRACT AND APPLIED ANALYSIS, 2014,