Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

被引:24
作者
Abu Bakar, Mohamad Hafizi [1 ]
Sarmidi, Mohamad Roji [2 ,3 ]
Kai, Cheng Kian [1 ,3 ]
Huri, Hasniza Zaman [4 ,5 ]
Yaakob, Harisun [3 ]
机构
[1] Univ Teknol Malaysia, Dept Bioproc Engn, Fac Chem Engn, Skudai 81310, Malaysia
[2] Univ Teknol Malaysia, Inst Bioprod Dev, Skudai 81310, Malaysia
[3] Univ Teknol Malaysia, Innovat Ctr Agritechnol Adv Bioproc ICA, Skudai 81310, Malaysia
[4] Univ Malaya, Fac Med, Dept Pharm, Kuala Lumpur 50603, Malaysia
[5] Univ Malaya, Med Ctr, Clin Invest Ctr, Kuala Lumpur 59100, Malaysia
关键词
adipocytes; mitochondrial dysfunction; inflammation; oxidative stress; insulin resistance; celastrol; nuclear factor kappa B (NF-kappa B); ADIPOSE-TISSUE INFLAMMATION; PROTEIN CARBONYLATION; OXIDATIVE STRESS; FATTY-ACIDS; TNF-ALPHA; ACTIVATION; GLUCOSE; MECHANISMS; CELASTROL; CYTOKINES;
D O I
10.3390/ijms151222227
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A growing body of evidence suggests that activation of nuclear factor kappa B (NF-kappa B) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-kappa B pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-kappa B inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-kappa B transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-kappa B inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.
引用
收藏
页码:22227 / 22257
页数:31
相关论文
共 70 条
[31]   Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance [J].
Lee, Byung-Cheol ;
Lee, Jongsoon .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2014, 1842 (03) :446-462
[32]   Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus [J].
Lee, HK ;
Song, JH ;
Shin, CS ;
Park, DJ ;
Park, KS ;
Lee, KU ;
Koh, CS .
DIABETES RESEARCH AND CLINICAL PRACTICE, 1998, 42 (03) :161-167
[33]   Inhibition of NF-κB activation through targeting IκB kinase by celastrol, a quinone methide triterpenoid [J].
Lee, Jeong-Hyung ;
Koo, Tae Hyeon ;
Yoon, Hyunkyung ;
Jung, Haeng Sun ;
Jin, Hui Zi ;
Lee, Kyeong ;
Hong, Young-Soo ;
Lee, Jung Joon .
BIOCHEMICAL PHARMACOLOGY, 2006, 72 (10) :1311-1321
[34]   Is NF-κB the sensor of oxidative stress? [J].
Li, NX ;
Karin, M .
FASEB JOURNAL, 1999, 13 (10) :1137-1143
[35]   Mitochondrial dysfunction and the inflammatory response [J].
Lopez-Armada, Maria J. ;
Riveiro-Naveira, Romina R. ;
Vaamonde-Garcia, Carlos ;
Valcarcel-Ares, Marta N. .
MITOCHONDRION, 2013, 13 (02) :106-118
[36]   NF-κB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes [J].
Mariappan, Nithya ;
Elks, Carrie M. ;
Sriramula, Srinivas ;
Guggilam, Anuradha ;
Liu, Zhizhen ;
Borkhsenious, Olga ;
Francis, Joseph .
CARDIOVASCULAR RESEARCH, 2010, 85 (03) :473-483
[37]   Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function [J].
Martins, Amanda R. ;
Nachbar, Renato T. ;
Gorjao, Renata ;
Vinolo, Marco A. ;
Festuccia, William T. ;
Lambertucci, Rafael H. ;
Cury-Boaventura, Maria F. ;
Silveira, Leonardo R. ;
Curi, Rui ;
Hirabara, Sandro M. .
LIPIDS IN HEALTH AND DISEASE, 2012, 11
[38]   NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration [J].
Mauro, Claudio ;
Leow, Shi Chi ;
Anso, Elena ;
Rocha, Sonia ;
Thotakura, Anil K. ;
Tornatore, Laura ;
Moretti, Marta ;
De Smaele, Enrico ;
Beg, Amer A. ;
Tergaonkar, Vinay ;
Chandel, Navdeep S. ;
Franzoso, Guido .
NATURE CELL BIOLOGY, 2011, 13 (10) :1272-U234
[39]   Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation [J].
Miki, H ;
Yamauchi, T ;
Suzuki, R ;
Komeda, K ;
Tsuchida, A ;
Kubota, N ;
Terauchi, Y ;
Kamon, J ;
Kaburagi, Y ;
Matsui, J ;
Akanuma, Y ;
Nagai, R ;
Kimura, S ;
Tobe, K ;
Kadowaki, T .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (07) :2521-2532
[40]   Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents [J].
Morino, K ;
Petersen, KF ;
Dufour, S ;
Befroy, D ;
Frattini, J ;
Shatzkes, N ;
Neschen, S ;
White, MF ;
Bilz, S ;
Sono, S ;
Pypaert, M ;
Shulman, GI .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (12) :3587-3593