Impact of Land Use on PM2.5 Pollution in a Representative City of Middle China

被引:56
作者
Yang, Haiou [1 ,2 ,3 ]
Chen, Wenbo [2 ]
Liang, Zhaofeng [2 ]
机构
[1] Jiangxi Agr Univ, Coll Forestry, Nanchang 330045, Jiangxi, Peoples R China
[2] Jiangxi Agr Univ, Key Lab Landscape & Environm, Nanchang 330045, Jiangxi, Peoples R China
[3] Jiujiang Univ, Coll Tourism & Terr Resources, Jiujiang 332005, Peoples R China
关键词
fine particulate matter (PM2.5); land use; land use regression (LUR); statistical analysis; urban functional zone; FINE PARTICULATE MATTER; USE REGRESSION-MODELS; URBAN AIR-QUALITY; SOURCE APPORTIONMENT; TEMPORAL VARIATIONS; SPATIAL VARIATION; NO2; PM10; VARIABILITY; EXPOSURE;
D O I
10.3390/ijerph14050462
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fine particulate matter (PM2.5) pollution has become one of the greatest urban issues in China. Studies have shown that PM2.5 pollution is strongly related to the land use pattern at the micro-scale and optimizing the land use pattern has been suggested as an approach to mitigate PM2.5 pollution. However, there are only a few researches analyzing the effect of land use on PM2.5 pollution. This paper employed land use regression (LUR) models and statistical analysis to explore the effect of land use on PM2.5 pollution in urban areas. Nanchang city, China, was taken as the study area. The LUR models were used to simulate the spatial variations of PM2.5 concentrations. Analysis of variance and multiple comparisons were employed to study the PM2.5 concentration variances among five different types of urban functional zones. Multiple linear regression was applied to explore the PM2.5 concentration variances among the same type of urban functional zone. The results indicate that the dominant factor affecting PM2.5 pollution in the Nanchang urban area was the traffic conditions. Significant variances of PM2.5 concentrations among different urban functional zones throughout the year suggest that land use types generated a significant impact on PM2.5 concentrations and the impact did not change as the seasons changed. Land use intensity indexes including the building volume rate, building density, and green coverage rate presented an insignificant or counter-intuitive impact on PM2.5 concentrations when studied at the spatial scale of urban functional zones. Our study demonstrates that land use can greatly affect the PM2.5 levels. Additionally, the urban functional zone was an appropriate spatial scale to investigate the impact of land use type on PM2.5 pollution in urban areas.
引用
收藏
页数:14
相关论文
共 57 条
[1]   Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American Heart Association [J].
Brook, Robert D. ;
Rajagopalan, Sanjay ;
Pope, C. Arden, III ;
Brook, Jeffrey R. ;
Bhatnagar, Aruni ;
Diez-Roux, Ana V. ;
Holguin, Fernando ;
Hong, Yuling ;
Luepker, Russell V. ;
Mittleman, Murray A. ;
Peters, Annette ;
Siscovick, David ;
Smith, Sidney C., Jr. ;
Whitsel, Laurie ;
Kaufman, Joel D. .
CIRCULATION, 2010, 121 (21) :2331-2378
[2]  
[Anonymous], J ANHUI AGR SCI
[3]  
[Anonymous], J METEOR ENV
[4]   The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies [J].
Arain, M. A. ;
Blair, R. ;
Finkelstein, N. ;
Brook, J. R. ;
Sahsuvaroglu, T. ;
Beckerman, B. ;
Zhang, L. ;
Jerrett, M. .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (16) :3453-3464
[5]   Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city [J].
Bandeira, Jorge M. ;
Coelho, Margarida C. ;
Sa, Maria Elisa ;
Tavares, Richard ;
Borrego, Carlos .
SCIENCE OF THE TOTAL ENVIRONMENT, 2011, 409 (06) :1154-1163
[6]   A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States [J].
Beckerman, Bernardo S. ;
Jerrett, Michael ;
Serre, Marc ;
Martin, Randall V. ;
Lee, Seung-Jae ;
van Donkelaar, Aaron ;
Ross, Zev ;
Su, Jason ;
Burnett, Richard T. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (13) :7233-7241
[7]   Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project [J].
Beelen, Rob ;
Hoek, Gerard ;
Vienneau, Danielle ;
Eeftens, Marloes ;
Dimakopoulou, Konstantina ;
Pedeli, Xanthi ;
Tsai, Ming-Yi ;
Kunzli, Nino ;
Schikowski, Tamara ;
Marcon, Alessandro ;
Eriksen, Kirsten T. ;
Raaschou-Nielsen, Ole ;
Stephanou, Euripides ;
Patelarou, Evridiki ;
Lanki, Timo ;
Yli-Tuomi, Tarja ;
Declercq, Christophe ;
Falq, Gregoire ;
Stempfelet, Morgane ;
Birk, Matthias ;
Cyrys, Josef ;
von Klot, Stephanie ;
Nador, Gizella ;
Varro, Mihaly Janos ;
Dedele, Audrius ;
Grazuleviciene, Regina ;
Moelter, Anna ;
Lindley, Sarah ;
Madsen, Christian ;
Cesaroni, Giulia ;
Ranzi, Andrea ;
Badaloni, Chiara ;
Hoffmann, Barbara ;
Nonnemacher, Michael ;
Kraemer, Ursula ;
Kuhlbusch, Thomas ;
Cirach, Marta ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Bellander, Tom ;
Korek, Michal ;
Olsson, David ;
Stromgren, Magnus ;
Dons, Evi ;
Jerrett, Michael ;
Fischer, Paul ;
Wang, Meng ;
Brunekreef, Bert ;
de Hoogh, Kees .
ATMOSPHERIC ENVIRONMENT, 2013, 72 :10-23
[8]   Reconstructing Primary and Secondary Components of PM2.5 Composition for an Urban Atmosphere [J].
Behera, Sailesh N. ;
Sharma, Mukesh .
AEROSOL SCIENCE AND TECHNOLOGY, 2010, 44 (11) :983-992
[9]  
Bell Michelle L, 2012, Res Rep Health Eff Inst, P5
[10]   Mapping urban air pollution using GIS: a regression-based approach [J].
Briggs, DJ ;
Collins, S ;
Elliott, P ;
Fischer, P ;
Kingham, S ;
Lebret, E ;
Pryl, K ;
VAnReeuwijk, H ;
Smallbone, K ;
VanderVeen, A .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (07) :699-718