A PERIODIC BOUNDARY VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER

被引:0
作者
Hakl, Robert [1 ]
Mukhigulashvili, Sulkhan [1 ,2 ]
机构
[1] Inst Math AS CR, Brno 61662, Czech Republic
[2] I Chavchavadze State Univ, Fac Math & Phys, GE-0179 Tbilisi, Georgia
关键词
Functional differential equation; boundary value problem; periodic solution;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the interval [0, omega], consider the periodic boundary value problem u((n))(t) = Sigma(n-1)(i=0) l(i)(u((i)))(t) + q(t), u((j))(0) = u((j))(omega) + c(j) (j = 0, ... , n-1), where n >= 2, l(i) : C ([0, omega]; R) -> L ([0, omega]; R) (i = 0, ... , n - 1) are linear bounded operators, q is an element of L ([0, omega]; R), c(j) is an element of R (j = 0, ... , n - 1). The effective sufficient conditions guaranteeing the unique solvability of the considered problem axe established.
引用
收藏
页码:651 / 665
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 2000, MEM DIFFER EQU MATH
[2]  
[Anonymous], 2000, MEM DIFFERENTIAL EQU
[3]  
AZBELEV N. V., 1991, Introduction to the Theory of Functionaldifferential Equations
[4]  
Hakl R, 2005, GEORGIAN MATH J, V12, P229
[5]  
HAKL R., 2004, ABSTR APPL ANAL, P45
[6]  
Hakl R., 2005, GEORGIAN MATH J, V12, P97
[7]  
HAKL R, 2008, UKR MAT ZH, V60, P413
[8]   On boundary value problems for systems of linear functional differential equations [J].
Kiguradze, I ;
Puza, B .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 1997, 47 (02) :341-373
[9]  
KIGURADZE I, 2001, ANN MAT PUR APPL, V180, P285
[10]  
Kiguradze IT, 1999, DIFF EQUAT+, V35, P71