Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images

被引:23
作者
Dhara, Ashis Kumar [1 ]
Mukhopadhyay, Sudipta [1 ]
Saha, Pramit [2 ]
Garg, Mandeep [3 ]
Khandelwal, Niranjan [3 ]
机构
[1] Indian Inst Technol, Dept Elect & Elect Commun Engn, Kharagpur 721302, W Bengal, India
[2] Jadavpur Univ, Dept Elect Engn, Kolkata 700032, India
[3] Postgrad Inst Med Educ & Res, Dept Radiodiagnosis, Chandigarh 160023, India
关键词
Lung cancer; CT images; Pulmonary nodule; Differential geometry; Spiculation; Lobulation; Sphericity; Content-based image retrieval; Precision; Mean similarity; Normalized discounted cumulative gain; DATABASE CONSORTIUM; CANCER; SIZE; LIDC;
D O I
10.1007/s11548-015-1284-0
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose Boundary roughness of a pulmonary nodule is an important indication of its malignancy. The irregularity of the shape of a nodule is represented in terms of a few diagnostic characteristics such as spiculation, lobulation, and sphericity. Quantitative characterization of these diagnostic characteristics is essential for designing a content-based image retrieval system and computer-aided system for diagnosis of lung cancer. Methods This paper presents differential geometry-based techniques for computation of spiculation, lobulation, and sphericity using the binary mask of the segmented nodule. These shape features are computed in 3D considering complete nodule. Results The performance of the proposed and competing methods is evaluated in terms of the precision, mean similarity, and normalized discounted cumulative gain on 891 nodules of Lung Image Database Consortium and Image Database Resource Initiative. The proposed methods are comparable to or better than gold standard technique. The reproducibility of proposed feature extraction techniques is evaluated using RIDER coffee break data set. The mean and standard deviation of the percent change of spiculation, lobulation, and sphericity are 1.66 +/- 2.36, 10.57 +/- 11.63, and 6.27 +/- 7.99 %, respectively. Conclusion The prior works of computation of spiculation, lobulation, and sphericity require a set of four ground truths from radiologists and, hence, can not be used in practice. The proposed methods do not require ground truth information of nodules from radiologists, and hence, it can be used in real-life computer-aided diagnosis system for lung cancer.
引用
收藏
页码:337 / 349
页数:13
相关论文
共 24 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]  
Dhara AK, 2013, SPIE MED IMAGING 201, V8670
[3]   A Segmentation Framework of Pulmonary Nodules in Lung CT Images (vol 29, pg 86, 2016) [J].
Dhara, Ashis Kumar ;
Mukhopadhyay, Sudipta ;
Das Gupta, Rahul ;
Garg, Mandeep ;
Khandelwal, Niranjan .
JOURNAL OF DIGITAL IMAGING, 2016, 29 (01) :148-148
[4]   Screening for early lung cancer with low-dose spiral CT: Prevalence in 817 asymptomatic smokers [J].
Diederich, S ;
Wormanns, D ;
Semik, M ;
Thomas, M ;
Lenzen, H ;
Roos, N ;
Heindel, W .
RADIOLOGY, 2002, 222 (03) :773-781
[5]  
Dong Chen-shi., 2005, Journal of Zhejiang University SCIENCE, V6, P128, DOI [DOI 10.1631/JZUS.2005.AS0128, 10.1631/jzus.2005.AS0128]
[6]   Texture Feature Analysis for Computer-Aided Diagnosis on Pulmonary Nodules [J].
Han, Fangfang ;
Wang, Huafeng ;
Zhang, Guopeng ;
Han, Hao ;
Song, Bowen ;
Li, Lihong ;
Moore, William ;
Lu, Hongbing ;
Zhao, Hong ;
Liang, Zhengrong .
JOURNAL OF DIGITAL IMAGING, 2015, 28 (01) :99-115
[7]  
Horsthemke WH, 2009, P SPIE MED IMAGING 2, V7260
[8]   Cumulated gain-based evaluation of IR techniques [J].
Järvelin, K ;
Kekäläinen, J .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2002, 20 (04) :422-446
[9]   Computer-aided diagnosis and the evaluation of lung disease [J].
Ko, JP ;
Naidich, DP .
JOURNAL OF THORACIC IMAGING, 2004, 19 (03) :136-155
[10]   SURFACE SHAPE AND CURVATURE SCALES [J].
KOENDERINK, JJ ;
VANDOORN, AJ .
IMAGE AND VISION COMPUTING, 1992, 10 (08) :557-564