Cellular motility driven by assembly and disassembly of actin filaments

被引:3326
作者
Pollard, TD [1 ]
Borisy, GG
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[2] Northwestern Univ, Sch Med, Dept Cellular & Mol Biol, Chicago, IL 60611 USA
关键词
D O I
10.1016/S0092-8674(03)00120-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Motile cells extend a leading edge by assembling a branched network of actin filaments that produces physical force, as the polymers grow beneath the plasma membrane. A core set of proteins including actin, Arp2/3 complex, profilin, capping protein, and ADF/cofilin can reconstitute the process in vitro, and mathematical models of the constituent reactions predict the rate of motion. Signaling pathways converging on WASp/Scar proteins regulate the activity of Arp2/3 complex, which mediates the initiation of new filaments as branches on preexisting filaments. After a brief spurt of growth, capping protein terminates the elongation of the filaments. After filaments have aged by hydrolysis of their bound ATP and dissociation of the gamma phosphate, ADF/cofilin proteins promote debranching and depolymerization. Profilin catalyzes the exchange of ADP for ATP, refilling the pool of ATP-actin monomers bound to profilin, ready for elongation.
引用
收藏
页码:453 / 465
页数:13
相关论文
共 124 条
[21]   Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments [J].
Dayel, MJ ;
Holleran, EA ;
Mullins, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :14871-14876
[22]   Thymosin-β4 changes the conformation and dynamics of actin monomers [J].
De La Cruz, EM ;
Ostap, EM ;
Brundage, RA ;
Reddy, KS ;
Sweeney, HL ;
Safer, D .
BIOPHYSICAL JOURNAL, 2000, 78 (05) :2516-2527
[23]   Polymerization and structure of nucleotide-free actin filaments [J].
De la Cruz, EM ;
Mandinova, A ;
Steinmetz, MO ;
Stoffler, D ;
Aebi, U ;
Pollard, TD .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 295 (03) :517-526
[24]   Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge [J].
DesMarais, V ;
Ichetovkin, I ;
Condeelis, J ;
Hitchcock-DeGregori, SE .
JOURNAL OF CELL SCIENCE, 2002, 115 (23) :4649-4660
[25]  
DRENCKHAHN D, 1986, J BIOL CHEM, V261, P2754
[26]   EFFECTS OF CYTOCHALASIN AND COLCEMID ON CORTICAL FLOW IN CELOMOCYTES [J].
EDDS, KT .
CELL MOTILITY AND THE CYTOSKELETON, 1993, 26 (03) :262-273
[27]   Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck [J].
Eden, S ;
Rohatgi, R ;
Podtelejnikov, AV ;
Mann, M ;
Kirschner, MW .
NATURE, 2002, 418 (6899) :790-793
[28]   Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics [J].
Edwards, DC ;
Sanders, LC ;
Bokoch, GM ;
Gill, GN .
NATURE CELL BIOLOGY, 1999, 1 (05) :253-259
[29]   Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility [J].
Egile, C ;
Loisel, TP ;
Laurent, V ;
Li, R ;
Pantaloni, D ;
Sansonetti, PJ ;
Carlier, MF .
JOURNAL OF CELL BIOLOGY, 1999, 146 (06) :1319-1332
[30]   PERSISTENT, DIRECTIONAL MOTILITY OF CELLS AND CYTOPLASMIC FRAGMENTS IN THE ABSENCE OF MICROTUBULES [J].
EUTENEUER, U ;
SCHLIWA, M .
NATURE, 1984, 310 (5972) :58-61