Creating Excess Electrons at the Anatase TiO2(101) Surface

被引:20
|
作者
Payne, D. T. [1 ,2 ]
Zhang, Y. [1 ,2 ]
Pang, C. L. [1 ,2 ]
Fielding, H. H. [1 ]
Thornton, G. [1 ,2 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] UCL, London Ctr Nanotechnol, London WC1H 0AH, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
TiO2; Anatase; Defect creation; Hydroxyl; Water; Excess electrons; WATER-ADSORPTION; SUBSURFACE DEFECTS; TIO2; H2O; PHOTOEXCITATION; CHEMISTRY; BEHAVIOR; SCIENCE; STEPS;
D O I
10.1007/s11244-016-0706-8
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Excess electrons facilitate redox reactions at the technologically relevant anatase TiO2(101) surface. The availability of these electrons is related to the defect concentration at the surface. We present two-photon (2PPE, 3.10-3.54 eV) and ultraviolet (UPS, 21.2 & 40.8 eV) photoemission spectroscopy measurements evidencing an increased concentration of excess electrons following electron bombardment at room temperature. Irradiation-induced surface oxygen vacancies are known to migrate into the sub-surface at this temperature, quickly equilibrating the surface defect concentration. Hence, we propose that the irradiated surface is hydroxylated. Peaks in UPS difference spectra are observed centred 8.45, 6.50 and 0.73 eV below the Fermi level, which are associated with the 3 sigma and 1 pi hydroxyl molecular orbitals and Ti 3d band gap states, respectively. The higher concentration of excess electrons at the hydroxylated anatase (101) surface may increase the potential for redox reactions.
引用
收藏
页码:392 / 400
页数:9
相关论文
共 50 条
  • [1] Creating Excess Electrons at the Anatase TiO2(101) Surface
    D. T. Payne
    Y. Zhang
    C. L. Pang
    H. H. Fielding
    G. Thornton
    Topics in Catalysis, 2017, 60 : 392 - 400
  • [2] Excess Electrons and Interstitial Li Atoms in TiO2 Anatase: Properties of the (101) Interface
    Spreafico, Clelia
    VandeVondele, Joost
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27): : 15009 - 15018
  • [3] Absence of midgap states due to excess electrons donated by adsorbed hydrogen on the anatase TiO2 (101) surface
    Nagatsuka, Naoki
    Kato, Koichi
    Wilde, Markus
    Fukutani, Katsuyuki
    PHYSICAL REVIEW B, 2022, 105 (04)
  • [4] Excess electrons in reduced rutile and anatase TiO2
    Yin, Wen-Jin
    Wen, Bo
    Zhou, Chuanyao
    Selloni, Annabella
    Liu, Li-Min
    SURFACE SCIENCE REPORTS, 2018, 73 (02) : 58 - 82
  • [5] Direct View at Excess Electrons in TiO2 Rutile and Anatase
    Setvin, Martin
    Franchini, Cesare
    Hao, Xianfeng
    Schmid, Michael
    Janotti, Anderson
    Kaltak, Merzuk
    Van de Walle, Chris G.
    Kresse, Georg
    Diebold, Ulrike
    PHYSICAL REVIEW LETTERS, 2014, 113 (08)
  • [6] Hydrogen interaction with the anatase TiO2(101) surface
    Aschauer, Ulrich
    Selloni, Annabella
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (48) : 16595 - 16602
  • [7] Trapping and dynamics of excess electrons at TiO2 anatase surfaces and interfaces
    Selloni, Annabella
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [8] Structure of a Water Monolayer on the Anatase TiO2(101) Surface
    Patrick, Christopher E.
    Giustino, Feliciano
    PHYSICAL REVIEW APPLIED, 2014, 2 (01):
  • [9] Surface chemistry of oxygen and water on anatase TiO2 (101)
    Setvin, Martin
    Hulva, Jan
    Daniel, Benjamin
    Simschitz, Thomas
    Schmid, Michael
    Aschauer, Ulrich
    Selloni, Annabella
    Diebold, Ulrike
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [10] Growth of Pt Particles on the Anatase TiO2 (101) Surface
    Zhou, Yun
    Muhich, Christopher L.
    Neltner, Brian T.
    Weimer, Alan W.
    Musgrave, Charles B.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (22): : 12114 - 12123