Application of deep learning for power system state forecasting

被引:11
|
作者
Mukherjee, Debottam [1 ]
Chakraborty, Samrat [2 ]
Ghosh, Sandip [1 ]
Mishra, Rakesh Kumar [1 ]
机构
[1] Indian Inst Technol BHU, Dept Elect Engn, Varanasi, Uttar Pradesh, India
[2] Natl Inst Technol Arunachal Pradesh, Dept Elect Engn, Yupia 791112, Arunachal Prade, India
关键词
copula; deep learning; gaussian multivariate; smart grid; state estimation; state forecasting; ESTIMATOR;
D O I
10.1002/2050-7038.12901
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The recent trend in modern power sector is to maintain observability of the grid for its smooth operation under all circumstances. To ascertain this aforementioned criterion, grid operators employ state estimation algorithms with a priori measurement data to determine the current operating states of the grid. The prime ideology behind such algorithms is the presence of an over-determined class of system with abundant measurement redundancy. With loss of real time measurement data, operators resort to state forecasting-based solutions. This work focuses on the use of scalable deep learning and machine learning models for appropriate forecasting of operating states both for healthy and contingency scenarios. This work also incorporates a critical comparison between them based on RMSE, MSE, MAE and R-squared index. To facilitate a better training and to prevent model underfitting, Gaussian copula based synthetic data are incorporated showcasing substantial enhancement in performance indices of the models [GRU (0.7958 -> 0.0088), LSTM (1.1173 -> 0.1020), SVM (1.7256 -> 0.1654) and SNN (2.5381 -> 0.1972)]. Such training strategies even under system unobservability with optimal hyper-parameter tuning of the models can lead to proper forecasting of operating states of the system. A comparative analysis between the neural network models under varying noise scenarios also portrays the efficacy of the proposed GRU model. The proposed architecture can also be implemented for real time state forecasting scheme with computational time in the order of micro (mu) seconds (210.34 mu s). Simulation results on IEEE 14 bus system validate these aforementioned propositions.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Transfer Learning Application for Berries Yield Forecasting using Deep Learning
    Chaudhary, Mohita
    Gastli, Mohamed Sadok
    Nassar, Lobna
    Karray, Fakhri
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [32] Application of wavelets in power system load forecasting
    Saha, A. K.
    Chowdhury, S.
    Chowdhury, S. P.
    Song, Y. H.
    Taylor, G. A.
    2006 POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-9, 2006, : 4188 - +
  • [33] A Deep Learning Model and Training Technique for 240 Hours Load Forecasting in Korea Power System
    Moon C.-H.
    Kwon B.-S.
    Song K.-B.
    Transactions of the Korean Institute of Electrical Engineers, 2022, 71 (04): : 585 - 591
  • [34] WPFSAD: Wind Power Forecasting System Integrating Dual-Stage Attention and Deep Learning
    Niu, Tong
    Wang, Jianzhou
    Du, Pei
    Yang, Wendong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (11) : 11252 - 11264
  • [35] Construction and Application of Short-Term and Mid-Term Power System Load Forecasting Model Based on Hybrid Deep Learning
    Xu, Hongsheng
    Fan, Ganglong
    Kuang, Guofang
    Song, Yanping
    IEEE ACCESS, 2023, 11 : 37494 - 37507
  • [36] DeepRailway: A Deep Learning System for Forecasting Railway Traffic
    Xia, Tianqi
    Song, Xuan
    Fan, Zipei
    Kanasugi, Hiroshi
    Chen, QuanJun
    Jiang, Renhe
    Shibasaki, Ryosuke
    IEEE 1ST CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2018), 2018, : 51 - 56
  • [37] Evasion Attacks with Adversarial Deep Learning Against Power System State Estimation
    Sayghe, Ali
    Zhao, Junbo
    Konstantinou, Charalambos
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [38] Application of a Deep Learning-Based Sea Surface Roughness Parameterization in a Global Forecasting System
    Sun, Difu
    Yang, Jinhui
    Yin, Fukang
    Zhang, Weimin
    Wu, Jianping
    Leng, Hongze
    Ren, Kaijun
    Song, Junqiang
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2025, 130 (04)
  • [39] Power Load Forecasting Based on LSTM Deep Learning Algorithm
    Wu, Dalei
    Liang, Shuhua
    Chen, Changji
    Chen, Yupei
    Wang, Pishi
    Long, Zhiyuan
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2024, 31 (06): : 2156 - 2160
  • [40] A Deep Learning Approach for Load Demand Forecasting of Power Systems
    Kollia, Ilianna
    Kollias, Stefanos
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 912 - 919