Convolutional Neural Network Committees For Handwritten Character Classification

被引:212
作者
Ciresan, Dan Claudiu [1 ]
Meier, Ueli [1 ]
Gambardella, Luca Maria [1 ]
Schmidhuber, Juergen [1 ]
机构
[1] SUPSI, USI, IDSIA, CH-6928 Manno Lugano, Switzerland
来源
11TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR 2011) | 2011年
关键词
Convolutional Neural Networks; Graphics Processing Unit; Handwritten Character Recognition; Committee; RECOGNITION;
D O I
10.1109/ICDAR.2011.229
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In 2010, after many years of stagnation, the MNIST handwriting recognition benchmark record dropped from 0.40% error rate to 0.35%. Here we report 0.27% for a committee of seven deep CNNs trained on graphics cards, narrowing the gap to human performance. We also apply the same architecture to NIST SD 19, a more challenging dataset including lower and upper case letters. A committee of seven CNNs obtains the best results published so far for both NIST digits and NIST letters. The robustness of our method is verified by analyzing 78125 different 7-net committees.
引用
收藏
页码:1135 / 1139
页数:5
相关论文
共 27 条
  • [1] [Anonymous], 2009, P 26 ANN INT C MACHI, DOI DOI 10.1145/1553374.1553453
  • [2] [Anonymous], 2005, INT C IM PROC
  • [3] Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
  • [4] Cavalin P. R., 2006, Applied Computing 2006. 21st Annual ACM Symposium on Applied Computing, P836, DOI 10.1145/1141277.1141468
  • [5] Cheng-Lin L., 2011, PROC INTERNATIONAL C
  • [6] Ciresan D. C., 2011, TECH REP IDSIA 03 11
  • [7] Ciresan D. C., 2011, INTERNATIONAL JOINT
  • [8] Deep, Big, Simple Neural Nets for Handwritten Digit Recognition
    Ciresan, Dan Claudiu
    Meier, Ueli
    Gambardella, Luca Maria
    Schmidhuber, Juergen
    [J]. NEURAL COMPUTATION, 2010, 22 (12) : 3207 - 3220
  • [9] Dos Santos E. M., 2008, C GENETIC EVOLUTIONA, P1423