Sup and Max Properties for the Numerical Radius of Operators in Banach Spaces

被引:4
作者
Ostrovska, Sofiya [1 ]
机构
[1] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
关键词
Almost transitive Banach space; numerical index; numerical radius; spectral radius; uniformly convex Banach space; 47A12; 46B04; 47A10; PENCILS;
D O I
10.1080/01630563.2015.1115771
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article deals with the following problem: given a bounded linear operator A in a Banach space X, how can multiplication of A by an operator of norm one (contraction) affect the numerical radius of A? The approach used in this work is close to that employed by Vieira and Kubrusly in 2007 for their study concerning spectral radius. It turns out that this study is closely related to the study of V-operators conducted in 2005 by Khatskevich, Ostrovskii, and Shulman; the results of this article demonstrate that in certain cases the obtained property of an operator implies that it is a V-operator, while in some other cases the converse is true.
引用
收藏
页码:492 / 498
页数:7
相关论文
共 50 条
[31]   An estimate for the numerical radius of the Hilbert space operators and a numerical radius inequality [J].
Rashid, Mohammad H. M. ;
Bani-Ahmad, Feras .
AIMS MATHEMATICS, 2023, 8 (11) :26384-26405
[32]   Numerical range and numerical radius for some operators [J].
Karaev, M. T. ;
Iskenderov, N. Sh. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (12) :3149-3158
[33]   On the numerical index of Banach spaces [J].
Ed-dari, E .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 403 :86-96
[34]   INEQUALITIES FOR TWO POWER SERIES OF NONCOMMUTATIVE OPERATORS IN HILBERT SPACES WITH APPLICATIONS TO NUMERICAL RADIUS [J].
Dragomir, Silvestru Sever ;
Garayev, Mubariz Tapdigoglu .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2025, 19 (01) :99-118
[35]   SOME INEQUALITIES RELATED TO NUMERICAL RADIUS AND DISTANCE FROM SCALAR OPERATORS IN HILBERT SPACES [J].
Kaadoud, Mohamed Chraibi ;
Benabdi, El Hassan ;
Guesba, Messaoud .
OPERATORS AND MATRICES, 2023, 17 (03) :857-866
[36]   Upper bounds for the numerical radius of Hilbert space operators [J].
Akram Mansoori ;
Mohsen Erfanian Omidvar ;
Khalid Shebrawi .
Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 :1473-1481
[37]   A Numerical Radius Inequality for Hilbert-Schmidt Operators [J].
Shakeri, Fatemeh ;
Alizadeh, Rahim .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (02)
[38]   Furtherance of numerical radius inequalities of Hilbert space operators [J].
Pintu Bhunia ;
Kallol Paul .
Archiv der Mathematik, 2021, 117 :537-546
[39]   Upper bounds for the numerical radius of Hilbert space operators [J].
Mansoori, Akram ;
Omidvar, Mohsen Erfanian ;
Shebrawi, Khalid .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) :1473-1481
[40]   Furtherance of numerical radius inequalities of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
ARCHIV DER MATHEMATIK, 2021, 117 (05) :537-546