ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data

被引:10747
作者
Wang, Kai [1 ]
Li, Mingyao [2 ]
Hakonarson, Hakon [1 ,3 ]
机构
[1] Childrens Hosp Philadelphia, Ctr Appl Genom, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Pediat, Philadelphia, PA 19104 USA
关键词
SNPS; ASSOCIATION; GENOMES;
D O I
10.1093/nar/gkq603
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput sequencing platforms are generating massive amounts of genetic variation data for diverse genomes, but it remains a challenge to pinpoint a small subset of functionally important variants. To fill these unmet needs, we developed the ANNOVAR tool to annotate single nucleotide variants (SNVs) and insertions/deletions, such as examining their functional consequence on genes, inferring cytogenetic bands, reporting functional importance scores, finding variants in conserved regions, or identifying variants reported in the 1000 Genomes Project and dbSNP. ANNOVAR can utilize annotation databases from the UCSC Genome Browser or any annotation data set conforming to Generic Feature Format version 3 (GFF3). We also illustrate a 'variants reduction' protocol on 4.7 million SNVs and indels from a human genome, including two causal mutations for Miller syndrome, a rare recessive disease. Through a stepwise procedure, we excluded variants that are unlikely to be causal, and identified 20 candidate genes including the causal gene. Using a desktop computer, ANNOVAR requires similar to 4 min to perform gene-based annotation and similar to 15 min to perform variants reduction on 4.7 million variants, making it practical to handle hundreds of human genomes in a day. ANNOVAR is freely available at http://www.openbioinformatics.org/annovar/.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Use of high-throughput targeted exome sequencing in genetic diagnosis of Chinese family with congenital cataract [J].
Ma, Ming-Fu ;
Li, Lian-Bing ;
Pei, Yun-Qi ;
Cheng, Zhi .
INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2016, 9 (05) :650-654
[22]   High-throughput, high-fidelity HLA genotyping with deep sequencing [J].
Wang, Chunlin ;
Krishnakumar, Sujatha ;
Wilhelmy, Julie ;
Babrzadeh, Farbod ;
Stepanyan, Lilit ;
Su, Laura F. ;
Levinson, Douglas ;
Fernandez-Vina, Marcelo A. ;
Davis, Ronald W. ;
Davis, Mark M. ;
Mindrinos, Michael .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (22) :8676-8681
[23]   The Role of High Performance, Grid and Cloud Computing in High-Throughput Sequencing [J].
Lightbody, Gaye ;
Browne, Fiona ;
Zheng, Huiru ;
Haberland, Valeriia ;
Blayney, Jaine .
2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, :890-895
[24]   Targeted high-throughput growth hormone 1 gene sequencing reveals high within-breed genetic diversity in South African goats [J].
Ncube, K. T. ;
Mdladla, K. ;
Dzomba, E. F. ;
Muchadeyi, F. C. .
ANIMAL GENETICS, 2016, 47 (03) :382-385
[25]   Multiple testing in high-throughput sequence data: experiences from Group 8 of Genetic Analysis Workshop 17 [J].
Koenig, Inke R. ;
Nsengimana, Jeremie ;
Papachristou, Charalampos ;
Simonson, Matthew A. ;
Wang, Kai ;
Weisburd, Jason A. .
GENETIC EPIDEMIOLOGY, 2011, 35 :S61-S66
[26]   High-throughput sequencing: a breakthrough in molecular diagnosis for precision medicine [J].
Dongare, Dipali Barku ;
Nishad, Shaik Shireen ;
Mastoli, Sakshi Y. ;
Saraf, Shubhini A. ;
Srivastava, Nidhi ;
Dey, Abhishek .
FUNCTIONAL & INTEGRATIVE GENOMICS, 2025, 25 (01)
[27]   BOOGIE: Predicting Blood Groups from High Throughput Sequencing Data [J].
Giollo, Manuel ;
Minervini, Giovanni ;
Scalzotto, Marta ;
Leonardi, Emanuela ;
Ferrari, Carlo ;
Tosatto, Silvio C. E. .
PLOS ONE, 2015, 10 (04)
[28]   High-Throughput Sequencing to Detect Novel Likely Gene-Disrupting Variants in Pathogenesis of Sporadic Brain Arteriovenous Malformations [J].
Scimone, Concetta ;
Donato, Luigi ;
Alafaci, Concetta ;
Granata, Francesca ;
Rinaldi, Carmela ;
Longo, Marcello ;
D'Angelo, Rosalia ;
Sidoti, Antonina .
FRONTIERS IN GENETICS, 2020, 11
[29]   High-throughput functional trait testing for bacterial pathogens [J].
Stromberg, Zachary R. ;
Phillips, Shelby M. B. ;
Omberg, Kristin M. ;
Hess, Becky M. ;
Torres, Alfredo G. .
MSPHERE, 2023, 8 (05)
[30]   Modelling temporal genetic and spatio-temporal residual effects for high-throughput phenotyping data [J].
Verbyla, A. P. ;
De Faveri, J. ;
Deery, D. M. ;
Rebetzke, G. J. .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (02) :284-308