Modified homotopy perturbation method for optimal control problems using the Pade approximant

被引:19
作者
Ganjefar, Soheil [1 ]
Rezaei, Sara [1 ]
机构
[1] Bu Ali Sina Univ, Dept Elect Engn, Hamadan, Iran
关键词
Hamilton-Jacobi-Bellman equation; Homotopy perturbation method; Optimal control problem; Pade approximant; NONLINEAR OPTIMAL-CONTROL; VARIATIONAL ITERATION METHOD; FREDHOLM INTEGRAL-EQUATIONS; JACOBI-BELLMAN EQUATION; DIFFERENTIAL-EQUATIONS; DECOMPOSITION METHOD; CONTROL-SYSTEMS; POLYNOMIALS; PARAMETERS; IVPS;
D O I
10.1016/j.apm.2016.02.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we propose a hybrid method that combines the homotopy perturbation method (HPM) and Pade technique to obtain the approximate analytic solution of the Hamilton-Jacobi-Bellman equation. The truncated series solution for the HPM is suitable but only in a small domain when the exact solution is not obtained. To improve the accuracy and enlarge the convergence domain, the Pade technique is applied to the series solution for the HPM. Three examples are given to illustrate the applicability, simplicity, and efficiency of the proposed method. The results obtained are then compared with the exact solution and basic HPM. We demonstrate that this hybrid method provides an approximate analytic solution with higher accuracy than the classic HPM. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:7062 / 7081
页数:20
相关论文
共 64 条
[31]   Optimal control of drug therapy in cancer treatment [J].
Itik, Mehmet ;
Salamci, Metin U. ;
Banks, Stephen P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E1473-E1486
[32]  
Jajarmi A, 2011, INT J INNOV COMPUT I, V7, P1413
[33]   Application of variational iteration method for Hamilton-Jacobi-Bellman equations [J].
Kafash, B. ;
Delavarkhalafi, A. ;
Karbassi, S. M. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) :3917-3928
[34]   Application of Chebyshev polynomials to derive efficient algorithms for the solution of optimal control problems [J].
Kafash, B. ;
Delavarkhalafi, A. ;
Karbassi, S. M. .
SCIENTIA IRANICA, 2012, 19 (03) :795-805
[35]  
Kafash B., 2013, J INTERPOLATION APPR, P1
[36]   An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations [J].
Khan, Y. ;
Vazquez-Leal, H. ;
Faraz, N. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (05) :2702-2708
[37]  
Khan Y., 2013, HEAT TRANSFER ANAL H
[38]   Application of new optimal homotopy perturbation and Adomian decomposition methods to the MHD non-Newtonian fluid flow over a stretching sheet [J].
Khan, Yasir ;
Latifizadeh, Habibolla .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2014, 24 (01) :124-136
[39]   A method for solving nonlinear time-dependent drainage model [J].
Khan, Yasir .
NEURAL COMPUTING & APPLICATIONS, 2013, 23 (02) :411-415
[40]   A New Approach to Van der Pol's Oscillator Problem [J].
Khan, Yasir ;
Madani, M. ;
Yildirim, A. ;
Abdou, M. A. ;
Faraz, Naeem .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (10-11) :620-624