A class of Banach spaces

被引:1
|
作者
Nasserddine, Wassim [1 ]
机构
[1] Univ Strasbourg 1, CNRS, Inst Rech Math Avancee, F-67084 Strasbourg, France
关键词
Banach spaces; Beurling-Domar weight; Fourier transform and cotransform on nonabelian groups; uncertainty principle;
D O I
10.3792/pjaa.83.56
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a separable locally compact unimodular group of type I, (G) over cap be its dual, is a measurable field of, not necessary bounded, operators on (G) over cap such that (p) over cap(pi) is self-adjoint, (p) over cap(pi) >= I for mu-almost all pi is an element of (G) over cap, and A((p) over cap) (G) = {f (x):= integral(G) over cap Tr[(f) over cap(pi)pi(x)(-1)]d mu(pi), (f) over cap is an element of L-1((G) over cap), parallel to f parallel to(p) over cap = integral(G) over cap Tr vertical bar(p) over cap(pi)vertical bar(pi)vertical bar d mu(pi) < infinity). We show that A((p) over cap) (G) is a Banach space endowed with the norm vertical bar vertical bar f vertical bar vertical bar((p) over cap), and we generalize this result to the matricial group G = G(nm), m >= n, of a local field.
引用
收藏
页码:56 / 59
页数:4
相关论文
共 50 条