Two-component analogue of two-dimensional long wave-short wave resonance interaction equations: a derivation and solutions

被引:43
作者
Ohta, Yasuhiro [1 ]
Maruno, Ken-ichi
Oikawa, Masayuki
机构
[1] Kobe Univ, Dept Math, Kobe, Hyogo 6578501, Japan
[2] Univ Texas Pan Amer, Dept Math, Edinburgh 78541, Midlothian, Scotland
[3] Kyushu Univ, Res Inst Appl Mech, Kasuga, Fukuoka 8168580, Japan
关键词
D O I
10.1088/1751-8113/40/27/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two- component analogue of two- dimensional long wave - short wave resonance interaction equations is derived in a physical setting. Wronskian solutions of the integrable two- component analogue of two- dimensional long wave - short wave resonance interaction equations are presented.
引用
收藏
页码:7659 / 7672
页数:14
相关论文
共 25 条
[1]   Soliton interactions in the vector NLS equation [J].
Ablowitz, MJ ;
Prinari, B ;
Trubatch, AD .
INVERSE PROBLEMS, 2004, 20 (04) :1217-1237
[2]  
ABLOWITZ MJ, 2004, DISCRETE CONTINUOUS
[3]   Asymptotic reductions of two coupled (2+1)-dimensional nonlinear Schrodinger equations: application to Bose-Einstein condensates [J].
Aguero, M. ;
Frantzeskakis, D. J. ;
Kevrekidis, P. G. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (24) :7705-7718
[4]  
[Anonymous], 1974, Sov. Phys. JETP
[5]   MODULATION FOR NONLINEAR-WAVE IN DISSIPATIVE OR UNSTABLE MEDIA [J].
ASANO, N .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 36 (03) :861-868
[6]  
BENNEY DJ, 1976, STUD APPL MATH, V55, P93
[7]  
BERKELA Y, 2002, P I MATH NAS UKR, V43, P296
[8]   OPERATOR APPROACH TO THE KADOMTSEV-PETVIASHVILI EQUATION - TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS III [J].
DATE, E ;
JIMBO, M ;
KASHIWARA, M ;
MIWA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3806-3812
[9]  
Date E., 1982, PUBL RIMS, V18, P1077, DOI DOI 10.2977/PRIMS/1195183297
[10]  
Hirota R., 2004, DIRECT METHOD SOLITO, DOI [10.1017/CBO9780511543043, DOI 10.1017/CBO9780511543043]