An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method

被引:188
作者
Parand, K. [2 ]
Dehghan, Mehdi [1 ]
Rezaei, A. R. [2 ]
Ghaderi, S. M. [2 ]
机构
[1] Amir Kabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran 15914, Iran
[2] Shaheed Beheshti Univ Med Sci, Dept Comp Sci, G C Tehran, Iran
关键词
Lane-Emden type equations; Nonlinear ODE; Collocation method; Hermite functions; Isothermal gas spheres; Astrophysics; HOMOTOPY-PERTURBATION METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; VARIATIONAL ITERATION METHOD; INITIAL-VALUE PROBLEMS; ADOMIAN-PADE TECHNIQUE; CHEBYSHEV TAU-METHOD; UNBOUNDED-DOMAINS; SPECTRAL METHODS; SEMIINFINITE INTERVAL; PSEUDOSPECTRAL METHOD;
D O I
10.1016/j.cpc.2010.02.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we propose a collocation method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain They are categorized as singular initial value problems The proposed approach is based on a Herniae function collocation (HFC) method To illustrate the reliability of the method, some special cases of the equations are solved as test examples The new method reduces the solution of a problem to the solution of a system of algebraic equations Hermite functions have prefect properties that make them useful to achieve this goal. We compare the present work with some well-known results and show that the new method is efficient and applicable COD (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:1096 / 1108
页数:13
相关论文
共 50 条
[31]   A residual method using Bezier curves for singular nonlinear equations of Lane-Emden type [J].
Adiyaman, Meltem E. ;
Oger, Volkan .
KUWAIT JOURNAL OF SCIENCE, 2017, 44 (04) :9-18
[32]   Approximate Solution to the Fractional Lane-Emden Type Equations [J].
Nouh, M. I. ;
Abdel-Salam, Emad A. -B. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4) :2199-2206
[33]   On the numerical solution of differential equations of Lane-Emden type [J].
Vanani, S. Karimi ;
Aminataei, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) :2815-2820
[34]   An analytic algorithm of Lane-Emden-type equations arising in astrophysics - a hybrid approach [J].
Baranwal, Vipul K. ;
Pandey, Ram K. ;
TripathiL, Ivianoj P. ;
Singh, Om P. .
JOURNAL OF THEORETICAL AND APPLIED PHYSICS, 2012, 6 (01)
[35]   A Nonclassical Radau Collocation Method for Nonlinear Initial-Value Problems with Applications to Lane-Emden Type Equations [J].
Maleki, Mohammad ;
Kajani, M. Tavassoli ;
Hashim, I. ;
Kilicman, A. ;
Atan, K. A. M. .
JOURNAL OF APPLIED MATHEMATICS, 2012,
[36]   A neural network approach for solving nonlinear differential equations of Lane-Emden type [J].
Parand, K. ;
Aghaei, A. A. ;
Kiani, S. ;
Zadeh, T. Ilkhas ;
Khosravi, Z. .
ENGINEERING WITH COMPUTERS, 2024, 40 (02) :953-969
[37]   RBF-DQ method for solving non-linear differential equations of Lane-Emden type [J].
Parand, K. ;
Hashemi, S. .
AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) :615-629
[38]   A new analytical technique for solving Lane - Emden type equations arising in astrophysics [J].
Deniz, Sinan ;
Bildik, Necdet .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (02) :305-320
[39]   A novel numerical solution to lane-emden type equations using monte carlo technique [J].
El-Essawy, Samah H. ;
Nouh, Mohamed, I ;
Soliman, Ahmed A. ;
Rahman, Helal I. Abdel ;
Abd-Elmougod, Gamal A. .
PHYSICA SCRIPTA, 2024, 99 (01)
[40]   Rational Legendre pseudospectral approach for solving nonlinear differential equations of Lane-Emden type [J].
Parand, K. ;
Shahini, M. ;
Dehghan, Mehdi .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) :8830-8840