Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud

被引:26
|
作者
Cianfrocco, Michael A. [1 ,2 ]
Leschziner, Andres E. [1 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA USA
来源
ELIFE | 2015年 / 4卷
基金
美国国家卫生研究院;
关键词
ELECTRON-MICROSCOPY; CRYO-EM; RESOLUTION; VISUALIZATION;
D O I
10.7554/eLife.06664
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] Pixel detectors for high-resolution cryo-electron microscopy
    Faruqi, AR
    Cattermole, DM
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 549 (1-3): : 192 - 198
  • [42] Computational Protocol for Assessing the Optimal Pixel Size to Improve the Accuracy of Single-particle Cryo-electron Microscopy Maps
    Tiwari, Sandhya P.
    Chhabra, Sahil
    Tama, Florence
    Miyashita, Osamu
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (05) : 2570 - 2580
  • [43] Structure Determination by Single-Particle Cryo-Electron Microscopy: Only the Sky (and Intrinsic Disorder) is the Limit
    Nwanochie, Emeka
    Uversky, Vladimir N.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (17)
  • [44] On bias, variance, overfitting, gold standard and consensus in single-particle analysis by cryo-electron microscopy
    Sorzano, C. O. S.
    Jimenez-Moreno, A.
    Maluenda, D.
    Martinez, M.
    Ramirez-Aportela, E.
    Krieger, J.
    Melero, R.
    Cuervo, A.
    Conesa, J.
    Filipovic, J.
    Conesa, P.
    del Cano, L.
    Fonseca, Y. C.
    Jimenez-de la Morena, J.
    Losana, P.
    Sanchez-Garcia, R.
    Strelak, D.
    Fernandez-Gimenez, E.
    de Isidro-Gomez, F. P.
    Herreros, D.
    Vilas, J. L.
    Marabini, R.
    Carazo, J. M.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2022, 78 : 410 - 423
  • [45] Random conical tilt reconstruction without particle picking in cryo-electron microscopy
    Lan, Ti-Yen
    Boumal, Nicolas
    Singer, Amit
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : 294 - 301
  • [46] Protein Secondary Structure Determination by Constrained Single-Particle Cryo-Electron Tomography
    Bartesaghi, Alberto
    Lecumberry, Federico
    Sapiro, Guillermo
    Subramaniam, Sriram
    STRUCTURE, 2012, 20 (12) : 2003 - 2013
  • [47] Integrative Modeling of Biomolecular Complexes: HADDOCKing with Cryo-Electron Microscopy Data
    van Zundert, Gydo C. P.
    Melquiond, Adrien S. J.
    Bonvin, Alexandre M. J. J.
    STRUCTURE, 2015, 23 (05) : 949 - 960
  • [48] Real-time cryo-electron microscopy data preprocessing with Warp
    Tegunov, Dimitry
    Cramer, Patrick
    NATURE METHODS, 2019, 16 (11) : 1146 - +
  • [49] Deep Consensus, a deep learning-based approach for particle pruning in cryo-electron microscopy
    Sanchez-Garcia, Ruben
    Segura, Joan
    Maluenda, David
    Maria Carazo, Jose
    Sorzano, Carlos Oscar S.
    IUCRJ, 2018, 5 : 854 - 865
  • [50] Method for Fully Automated Particle Picking in Cryo-Electron Microscopy Based on a CNN
    Da, Ting
    Ding, Jianzhong
    Yang, Liang
    Chirikjian, Gregory S.
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 633 - 638