Nonlinear response and emerging nonequilibrium microstructures for biased diffusion in confined crowded environments

被引:40
作者
Benichou, O. [1 ]
Illien, P. [1 ,2 ,3 ]
Oshanin, G. [1 ]
Sarracino, A. [1 ,4 ,5 ]
Voituriez, R. [1 ]
机构
[1] Univ Paris 04, Lab Phys Theor Mat Condensee, UPMC, CNRS,UMR 7600, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[3] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[4] Univ Roma La Sapienza, CNR ISC, Ple A Moro 2, I-00185 Rome, Italy
[5] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
关键词
MICRORHEOLOGY; PARTICLE; DYNAMICS; MOTION; WALK;
D O I
10.1103/PhysRevE.93.032128
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study analytically the dynamics and the microstructural changes of a host medium caused by a driven tracer particle moving in a confined, quiescent molecular crowding environment. Imitating typical settings of active microrheology experiments, we consider here a minimal model comprising a geometrically confined lattice system (a two-dimensional striplike or a three-dimensional capillary-like system) populated by two types of hard-core particles with stochastic dynamics (a tracer particle driven by a constant external force and bath particles moving completely at random). Resorting to a decoupling scheme, which permits us to go beyond the linear-response approximation (Stokes regime) for arbitrary densities of the lattice gas particles, we determine the force-velocity relation for the tracer particle and the stationary density profiles of the host medium particles around it. These results are validated a posteriori by extensive numerical simulations for a wide range of parameters. Our theoretical analysis reveals two striking features: (a) We show that, under certain conditions, the terminal velocity of the driven tracer particle is a nonmonotonic function of the force, so in some parameter range the differential mobility becomes negative, and (b) the biased particle drives the whole system into a nonequilibrium steady state with a stationary particle density profile past the tracer, which decays exponentially, in sharp contrast with the behavior observed for unbounded lattices, where an algebraic decay is known to take place.
引用
收藏
页数:13
相关论文
共 68 条
[21]   Journey of an intruder through the fluidization and jamming transitions of a dense granular media [J].
Candelier, Raphael ;
Dauchot, Olivier .
PHYSICAL REVIEW E, 2010, 81 (01)
[22]   Microrheology of colloidal dispersions by Brownian dynamics simulations [J].
Carpen, IC ;
Brady, JF .
JOURNAL OF RHEOLOGY, 2005, 49 (06) :1483-1502
[23]   Negative resistance and rectification in Brownian transport [J].
Cecchi, GA ;
Magnasco, MO .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1968-1971
[24]   Generalized Langevin equations for a driven tracer in dense soft colloids: construction and applications [J].
Demery, Vincent ;
Benichou, Olivier ;
Jacquin, Hugo .
NEW JOURNAL OF PHYSICS, 2014, 16
[25]   Depletion forces in nonequilibrium -: art. no. 248301 [J].
Dzubiella, J ;
Löwen, H ;
Likos, CN .
PHYSICAL REVIEW LETTERS, 2003, 91 (24)
[26]   Theory of nonlinear rheology and yielding of dense colloidal suspensions [J].
Fuchs, M ;
Cates, ME .
PHYSICAL REVIEW LETTERS, 2002, 89 (24)
[27]   Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory [J].
Gazuz, I. ;
Fuchs, M. .
PHYSICAL REVIEW E, 2013, 87 (03)
[28]   Active and Nonlinear Microrheology in Dense Colloidal Suspensions [J].
Gazuz, I. ;
Puertas, A. M. ;
Voigtmann, Th. ;
Fuchs, M. .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)
[29]   Nonequilibrium Brownian Motion beyond the Effective Temperature [J].
Gnoli, Andrea ;
Puglisi, Andrea ;
Sarracino, Alessandro ;
Vulpiani, Angelo .
PLOS ONE, 2014, 9 (04)
[30]   Spatial cooperativity in soft glassy flows [J].
Goyon, J. ;
Colin, A. ;
Ovarlez, G. ;
Ajdari, A. ;
Bocquet, L. .
NATURE, 2008, 454 (7200) :84-87