Limit theorem for maximum of the storage process with fractional Brownian motion as input

被引:30
作者
Hüsler, J [1 ]
Piterbarg, V [1 ]
机构
[1] Univ Bern, Dept Math & Stat, CH-3095 Bern, Switzerland
关键词
storage process; maximum; limit distribution; fractional Brownian motion; dense grid;
D O I
10.1016/j.spa.2004.07.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The maximum M-T of the storage process Y(t) = sup(sgreater than or equal tot)(X(s) - X(t) - c(s - t)) in the interval [0, 7] is dealt with, in particular, for growing interval length T. Here X(s) is a fractional Brownian motion with Hurst parameter, 0<H<1. For fixed T the asymptotic behaviour Of MT was analysed by Piterbarg (Extremes 4(2) (2001) 147) by determining an approximation for the probability P{M-T > u} for u --> infinity. Using this expression the convergence P{M-T < u(T)(x)} --> G(x) as T --> infinity is derived where u(T)(x) --> infinity is a suitable normalization and G(x) = exp(-exp(-x)) the Gumbel distribution. Also the relation to the maximum of the process on a dense grid is analysed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:231 / 250
页数:20
相关论文
共 11 条
[1]  
ALBIN JMP, 2004, ANN APPL PROBAB, V14, P8920
[2]   On the supremum distribution of integrated stationary Gaussian processes with negative linear drift [J].
Choe, J ;
Shroff, NB .
ADVANCES IN APPLIED PROBABILITY, 1999, 31 (01) :135-157
[3]  
DUFFIELD NG, 1996, LARGE DEVIATIONS OVE
[4]   Extremes of a certain class of Gaussian processes [J].
Hüsler, J ;
Piterbarg, V .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 83 (02) :257-271
[5]   ASYMPTOTIC APPROXIMATION OF CROSSING PROBABILITIES OF RANDOM SEQUENCES [J].
HUSLER, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 63 (02) :257-270
[6]  
Leadbetter M. R., 1983, Springer Series in Statistics, DOI 10.1007/978-1-4612-5449-2
[7]  
Narayan O., 1998, Adv. Perform. Anal, V1, P39
[8]  
NORROS I, 1999, ADV PERFORMANCE ANAL, V1, P1
[9]  
NORROS I, 1997, FRACTALS ENG
[10]  
Piterbarg V I., 1996, Asymptotic Methods in the Theory of Gaussian Processes and Fields