The K(π, 1) conjecture for a class of Artin groups

被引:11
作者
Ellis, Graham [1 ]
Skoldberg, Emil [1 ]
机构
[1] Natl Univ Ireland, Dept Math, Galway, Ireland
关键词
Artin group; Eilenberg-Mac Lane space; cohomology groups; HYPERPLANE COMPLEMENTS; BRAID-GROUPS;
D O I
10.4171/CMH/200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Salvetti constructed a cellular space B-D for any Artin group A(D) defined by a Coxeter graph D. We show that B-D is an Eilenberg-Mac Lane space if B-D' is an Eilenberg-Mac Lane space for every subgraph D' of D involving no infinity-edges.
引用
收藏
页码:409 / 415
页数:7
相关论文
共 16 条
[11]  
ELLIS G, HOMOLOGICAL ALGEBRA
[12]   HYPERPLANE COMPLEMENTS OF LARGE TYPE [J].
HENDRIKS, H .
INVENTIONES MATHEMATICAE, 1985, 79 (02) :375-381
[13]   Parabolic subgroups of Artin groups [J].
Paris, L .
JOURNAL OF ALGEBRA, 1997, 196 (02) :369-399
[14]  
Salvetti M, 1994, MATH RES LETT, V1, P565
[15]   THE HOMOLOGICAL ALGEBRA OF ARTIN GROUPS [J].
SQUIER, CC .
MATHEMATICA SCANDINAVICA, 1994, 75 (01) :5-43
[16]  
VANDERLEK H, 1983, THESIS NIJMEGEN