The K(π, 1) conjecture for a class of Artin groups

被引:11
作者
Ellis, Graham [1 ]
Skoldberg, Emil [1 ]
机构
[1] Natl Univ Ireland, Dept Math, Galway, Ireland
关键词
Artin group; Eilenberg-Mac Lane space; cohomology groups; HYPERPLANE COMPLEMENTS; BRAID-GROUPS;
D O I
10.4171/CMH/200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Salvetti constructed a cellular space B-D for any Artin group A(D) defined by a Coxeter graph D. We show that B-D is an Eilenberg-Mac Lane space if B-D' is an Eilenberg-Mac Lane space for every subgraph D' of D involving no infinity-edges.
引用
收藏
页码:409 / 415
页数:7
相关论文
共 16 条
[1]   ARTIN GROUPS AND INFINITE COXETER GROUPS [J].
APPEL, KI ;
SCHUPP, PE .
INVENTIONES MATHEMATICAE, 1983, 72 (02) :201-220
[2]  
Blind Roswitha., 1987, Aequationes Math, V34, P287, DOI DOI 10.1007/BF01830678
[3]  
Brown K. S., 1982, GRAD TEXTS MATH, V87
[4]   The K(π, 1) problem for the affine Artin group of type (B)over-tilden and its cohomology [J].
Callegaro, F. ;
Moroni, D. ;
Salvetti, M. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (01) :1-22
[5]   The K(π, 1)-conjecture for the affine braid groups [J].
Charney, R ;
Peifer, D .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (03) :584-600
[6]   THE K(PI,1)-PROBLEM FOR HYPERPLANE COMPLEMENTS ASSOCIATED TO INFINITE REFLECTION GROUPS [J].
CHARNEY, R ;
DAVIS, MW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (03) :597-627
[7]  
CHARNEY R, 1995, ANN MATH STUD, V138, P110
[8]   PROJECTIVE-RESOLUTIONS FOR GRAPH PRODUCTS [J].
COHEN, DE .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 :185-188
[9]   Discrete groups generated by reflections [J].
Coxeter, HSM .
ANNALS OF MATHEMATICS, 1934, 35 :588-621
[10]   GENERALIZED BRAID GROUPS [J].
DELIGNE, P .
INVENTIONES MATHEMATICAE, 1972, 17 (04) :273-&