WEIGHTED HARDY-TYPE INEQUALITIES ON THE CONE OF QUASI-CONCAVE FUNCTIONS

被引:5
作者
Persson, L. -E. [1 ,2 ]
Popova, O. V. [3 ]
Stepanov, V. D. [3 ]
机构
[1] Lulea Univ Technol, Dept Engn Sci & Math, SE-97187 Lulea, Sweden
[2] Narvik Univ, NO-8505 Narvik, Norway
[3] Peoples Friendship Univ Russia, Dept Math Anal & Funct Theory, Moscow 117198, Russia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2014年 / 17卷 / 03期
关键词
Hardy operator; Hardy-type inequality; weight; measure; Lorentz space; concave function; quasi-concave function; REDUCTION THEOREMS; MONOTONE; OPERATORS; EMBEDDINGS;
D O I
10.7153/mia-17-64
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to the study of weighted Hardy- type inequalities on the cone of quasi- concave functions, which is equivalent to the study of the boundedness of the Hardy operator between the Lorentz Gamma- spaces. For described inequalities we obtain necessary and sufficient conditions to hold for parameters q >= 1, p > 0 and sufficient conditions for the rest of the range of parameters.
引用
收藏
页码:879 / 898
页数:20
相关论文
共 33 条
[1]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[2]   MAXIMAL FUNCTIONS ON CLASSICAL LORENTZ SPACES AND HARDY INEQUALITY WITH WEIGHTS FOR NONINCREASING FUNCTIONS [J].
ARINO, MA ;
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (02) :727-735
[3]  
Asekritova IU, 1997, STUD MATH, V124, P107
[4]  
Bennett C., 1988, Interpolation of operators
[5]   Weighted Hardy inequalities for decreasing sequences and functions [J].
Bennett, G ;
Grosse-Erdmann, KG .
MATHEMATISCHE ANNALEN, 2006, 334 (03) :489-531
[6]   On embeddings between classical Lorentz spaces [J].
Carro, M ;
Pick, L ;
Soria, J ;
Stepanov, VD .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (03) :397-428
[7]  
Carro M, 2008, J OPERAT THEOR, V59, P309
[8]   Reduction theorems for weighted integral inequalities on the cone of monotone functions [J].
Gogatishvili, A. ;
Stepanov, V. D. .
RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (04) :597-664
[9]   Operators on cones of monotone functions [J].
Gogatishvili, A. ;
Stepanov, V. D. .
DOKLADY MATHEMATICS, 2012, 86 (01) :562-565
[10]   Discretization and anti-discretization of rearrangement-invariant norms [J].
Gogatishvili, A ;
Pick, L .
PUBLICACIONS MATEMATIQUES, 2003, 47 (02) :311-358