Application of Artificial Neural Network to Predict Survival Time for Patients with Bladder Cancer

被引:0
作者
Kolasa, Marta [1 ]
Wojtyna, Ryszard [1 ,2 ]
Dlugosz, Rafal [2 ,3 ,4 ]
Jozwicki, Wojciech [5 ]
机构
[1] Univ Technol & Life Sci, Fac Telecommun & Elect Engn, Ul Kaliskiego 7, PL-85796 Bydgoszcz, Poland
[2] Coll Comp Sci, Dept Bydgoszcz, PL-85766 Bydgoszcz, Poland
[3] Univ Neuchatel, Inst Microtechnol, CH-2000 Neuchatel, Switzerland
[4] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4,, Canada
[5] Nicholas Copernicus Univ Torun, F Lukaszczyk Oncol Ctr, Dept Pathol, Ludwik Rydygier Collegium Med Bydgoszcz, Bydgoszcz, Poland
来源
COMPUTERS IN MEDICAL ACTIVITY | 2009年 / 65卷
关键词
artificial neural network; bladder cancer; prognosis; survival analysis; RADICAL CYSTECTOMY; PROSTATE-CANCER; CARCINOMA; UROLOGY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an application of an artificial neural network to determine survival time of patients with a bladder cancer. Different learning methods have been investigated to find a solution. which is most optimal from a computational complexity point of view. In our study, a model of a multilayer perceptron with a training algorithm based on an error back-propagation method with a momentum component was applied. Data analysis was performed using the perceptron with one hidden layer and training methods with incremental and cumulative neuron weight updating. We have examined an influence of the order in the training data file on the final prediction results. The efficiency of the proposed methodology in the bladder urothelial cancer prediction after cystectomy is on the level of 90%, which is the best result ever reported. Best outcomes one achieves for 5 neurons in the hidden layer.
引用
收藏
页码:113 / +
页数:3
相关论文
共 22 条
  • [1] Abbod MF, 2006, IEEE INTELL SYST, P646, DOI [10.1109/IS.2006.348495, DOI 10.1109/IS.2006.348495]
  • [2] Catto JWF, 2003, CLIN CANCER RES, V9, P4172
  • [3] Improving and predicting radiosensitivity in muscle invasive bladder cancer
    Colquhoun, AJ
    Jones, GDD
    Al Moneef, M
    Bowman, KJ
    Kockelbergh, RC
    Symonds, RP
    Steward, WP
    Mellon, JK
    [J]. JOURNAL OF UROLOGY, 2003, 169 (06) : 1983 - 1992
  • [4] Prognostic markers for bladder cancer:: International consensus panel on bladder tumor markers
    Habuchi, T
    Marberger, M
    Droller, MJ
    Hemstreet, GP
    Grossman, HB
    Schalken, JA
    Schmitz-Dräger, BJ
    Murphy, WM
    Bono, AV
    Goebell, P
    Getzenberg, RH
    Hautmann, SH
    Messing, E
    Fradet, Y
    Lokeshwar, VB
    [J]. UROLOGY, 2005, 66 (6A) : 64 - 74
  • [5] Jefferson MF, 1997, CANCER-AM CANCER SOC, V79, P1338, DOI 10.1002/(SICI)1097-0142(19970401)79:7<1338::AID-CNCR10>3.0.CO
  • [6] 2-0
  • [7] Nomogram for predicting disease recurrence after radical cystectomy for transitional cell carcinoma of the bladder
    Karakiewicz, Pierre I.
    Shariat, Shahrokh F.
    Palapattu, Ganesh S.
    Gilad, Amiel E.
    Lotan, Yair
    Rogers, Craig G.
    Vazina, Amnon
    Gupta, Amit
    Bastian, Patrick J.
    Perrotte, Paul
    Sagalowsky, Arthur I.
    Schoenberg, Mark
    Lerner, Seth P.
    [J]. JOURNAL OF UROLOGY, 2006, 176 (04) : 1354 - 1361
  • [8] KHASHMAN A, 2007, EUROCON 2007
  • [9] Lopez-Beltran A, 2004, WHO CLASSIFICATION T, P97
  • [10] Measurement of brain structures with artificial neural networks: Two- and three-dimensional applications
    Magnotta, VA
    Heckel, D
    Andreasen, NC
    Cizadlo, T
    Corson, PW
    Ehrhardt, JC
    Yuh, WTC
    [J]. RADIOLOGY, 1999, 211 (03) : 781 - 790