Forced convection heat transfer in microchannel heat sinks

被引:64
作者
Chen, Chien-Hsin [1 ]
机构
[1] Natl Formosa Univ, Dept Mech Design Engn, Tenri, Nara 632, Japan
关键词
microchannel heat sinks; forced convection; electronics cooling;
D O I
10.1016/j.ijheatmasstransfer.2006.11.001
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents an analysis of forced convection heat transfer in microchannel heat sinks for electronic system cooling. In view of the small dimensions of the microstructures, the microchannel is modeled as a fluid-saturated porous medium. Numerical solutions are obtained based on the Forchheimer-Brinkman-extended Darcy equation for the fluid flow and the two-equation model for heat transfer between the solid and fluid phases. The velocity field in the microchannel is first solved by a finite-difference scheme, and then the energy equations governing the solid and fluid phases are solved simultaneously for the temperature distributions. Also, analytical expressions for the velocity and temperature profiles are presented for a simpler flow model, i.e., the Brinkman-extended Darcy model. This work attempts to perform a systematic study on the effects of major parameters on the flow and heat transfer characteristics of forced convection in the microchannel heat sink. The governing parameters of engineering importance include the channel aspect ratio (alpha(s)), inertial force parameter (Gamma), porosity (epsilon), and the effective thermal conductivity ratio (k(Gamma)). The velocity profiles of the fluid in the microchannel, the temperature distributions of the solid and fluid phases, and the overall Nusselt number are illustrated for various values of the problem parameters. It is found that the fluid inertia force alters noticeably the dimensionless velocity distribution and the fluid temperature distribution, while the solid temperature distribution is almost insensitive to the fluid inertia. Moreover, the overall Nusselt number increases with increasing the values of alpha(s) and epsilon, while it decreases with increasing k(Gamma). (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2182 / 2189
页数:8
相关论文
共 16 条
[1]  
[Anonymous], ADV THERMAL MODELING
[2]  
[Anonymous], 1982, IEEE P 32 EL C
[3]   Analysis of non-Darcian mixed convection from impermeable horizontal surfaces in porous media: The entire regime [J].
Chen, CH .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1997, 40 (12) :2993-2997
[4]   On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity [J].
Gu, S ;
Lu, TJ ;
Evans, AG .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (11) :2163-2175
[5]   Compact modeling of fluid flow and heat transfer in straight fin heat sinks [J].
Kim, D ;
Kim, SJ .
JOURNAL OF ELECTRONIC PACKAGING, 2004, 126 (02) :247-255
[6]   Forced convection in microstructures for electronic equipment cooling [J].
Kim, SJ ;
Kim, D .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (03) :639-645
[7]   Methods for thermal optimization of microchannel heat sinks [J].
Kim, SJ .
HEAT TRANSFER ENGINEERING, 2004, 25 (01) :37-49
[8]   Thermal optimization of a circular-sectored finned tube using a porous medium approach [J].
Kim, SJ ;
Yoo, JW ;
Jang, SP .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (06) :1026-1033
[9]   On the local thermal equilibrium in microchannel heat sinks [J].
Kim, SJ ;
Kim, D ;
Lee, DY .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2000, 43 (10) :1735-1748
[10]  
KNIGHT RW, 1991, J ELECTRON PACKAGING, V113, P313, DOI DOI 10.1115/1.2905412]